skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph-Based Ascent Algorithms for Function Maximization
We study the problem of finding the maximum of a function defined on the nodes of a connected graph. The goal is to identify a node where the function obtains its maximum. We focus on local iterative algorithms, which traverse the nodes of the graph along a path, and the next iterate is chosen from the neighbors of the current iterate with probability distribution determined by the function values at the current iterate and its neighbors. We study two algorithms corresponding to a Metropolis-Hastings random walk with different transition kernels: (i) The first algorithm is an exponentially weighted random walk governed by a parameter gamma. (ii) The second algorithm is defined with respect to the graph Laplacian and a smoothness parameter k. We derive convergence rates for the two algorithms in terms of total variation distance and hitting times. We also provide simulations showing the relative convergence rates of our algorithms in comparison to an unbiased random walk, as a function of the smoothness of the graph function. Our algorithms may be categorized as a new class of “descent-based” methods for function maximization on the nodes of a graph.  more » « less
Award ID(s):
1841190
PAR ID:
10105681
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the ad-hoc networks consisting of n wireless nodes that are located on the plane. Any two given nodes are called neighbors if they are located within a certain distance (communication range) from one another. A given node can be directly connected to any one of its neighbors, and picks its connections according to a unique topology control algorithm that is available at every node. Given that each node knows only the indices (unique identification numbers) of its one and two-hop neighbors, we identify an algorithm that preserves connectivity and can operate without the need of any synchronization among nodes. Moreover, the algorithm results in a sparse graph with at most 5n edges and a maximum node degree of 10. Existing algorithms with the same promises further require neighbor distance and/or direction information at each node. We also evaluate the performance of our algorithm for random networks. In this case, our algorithm provides an asymptotically connected network with n(1+o(1)) edges with a degree less than or equal to 6 for 1-o(1) fraction of the nodes. We also introduce another asynchronous connectivity-preserving algorithm that can provide an upper bound as well as a lower bound on node degrees. 
    more » « less
  2. null (Ed.)
    Filter banks on graphs are shown to be useful for analyzing data defined over networks, as they decompose a graph signal into components with low variation and high variation. Based on recent node-asynchronous implementation of graph filters, this study proposes an asynchronous implementation of filter banks on graphs. In the proposed algorithm nodes follow a randomized collect-compute-broadcast scheme: if a node is in the passive stage it collects the data sent by its incoming neighbors and stores only the most recent data. When a node gets into the active stage at a random time instance, it does the necessary filtering computations locally, and broadcasts a state vector to its outgoing neighbors. When the underlying filters (of the filter bank) are rational functions with the same denominator, the proposed filter bank implementation does not require additional communication between the neighboring nodes. However, computations done by a node increase linearly with the number of filters in the bank. It is also proven that the proposed asynchronous implementation converges to the desired output of the filter bank in the mean-squared sense under mild stability conditions. The convergence is verified also with numerical experiments. 
    more » « less
  3. null (Ed.)
    Variational algorithms have gained prominence over the past two decades as a scalable computational environment for Bayesian inference. In this article, we explore tools from the dynamical systems literature to study the convergence of coordinate ascent algorithms for mean field variational inference. Focusing on the Ising model defined on two nodes, we fully characterize the dynamics of the sequential coordinate ascent algorithm and its parallel version. We observe that in the regime where the objective function is convex, both the algorithms are stable and exhibit convergence to the unique fixed point. Our analyses reveal interesting discordances between these two versions of the algorithm in the region when the objective function is non-convex. In fact, the parallel version exhibits a periodic oscillatory behavior which is absent in the sequential version. Drawing intuition from the Markov chain Monte Carlo literature, we empirically show that a parameter expansion of the Ising model, popularly called the Edward–Sokal coupling, leads to an enlargement of the regime of convergence to the global optima. 
    more » « less
  4. This paper considers a node-asynchronous implementation of rational (“IIR”) filters on graphs, in which the nodes are assumed to wake up randomly and independently from each other, and communicate only with their immediate neighbors. The underlying graph is allowed to be directed, possibly with a non-diagonalizable adjacency matrix. Since the nodes are allowed to act independently, the proposed implementation is practical for very large or autonomous networks where synchronization is difficult to achieve. Furthermore, the proposed algorithm is 1-hop localized on the graph irrespective of the order of the filter. The method is shown to converge in the mean-squared sense under a boundedness assumption on the filter as well as the graph operator. The result follows from the convergence of a more general randomized asynchronous state recursion, which is also presented in this paper. The algorithm is simulated on a random geometric graph, which numerically verifies the convergence. 
    more » « less
  5. Berry, Jonathan; Shmoys, David; Cowen, Lenore; Naumann, Uwe (Ed.)
    Continuous DR-submodular functions are a class of functions that satisfy the Diminishing Returns (DR) property, which implies that they are concave along non-negative directions. Existing works have studied monotone continuous DR-submodular maximization subject to a convex constraint and have proposed efficient algorithms with approximation guarantees. However, in many applications, e. g., computing the stability number of a graph and mean-field inference for probabilistic log-submodular models, the DR-submodular function has the additional property of being strongly concave along non-negative directions that could be utilized for obtaining faster convergence rates. In this paper, we first introduce and characterize the class of strongly DR-submodular functions and show how such a property implies strong concavity along non-negative directions. Then, we study L-smooth monotone strongly DR-submodular functions that have bounded curvature, and we show how to exploit such additional structure to obtain algorithms with improved approximation guarantees and faster convergence rates for the maximization problem. In particular, we propose the SDRFW algorithm that matches the provably optimal approximation ratio after only iterations, where c ∈ [0,1] and μ ≥ 0 are the curvature and the strong DR-submodularity parameter. Furthermore, we study the Projected Gradient Ascent (PGA) method for this problem and provide a refined analysis of the algorithm with an improved approximation ratio (compared to ½ in prior works) and a linear convergence rate. Given that both algorithms require knowledge of the smoothness parameter L, we provide a novel characterization of L for DR-submodular functions showing that in many cases, computing L could be formulated as a convex optimization problem, i. e., a geometric program, that could be solved efficiently. Experimental results illustrate and validate the efficiency and effectiveness of our algorithms. 
    more » « less