Abstract This article develops a conformal prediction method for classification tasks that can adapt to random label contamination in the calibration sample, often leading to more informative prediction sets with stronger coverage guarantees compared to existing approaches. This is obtained through a precise characterization of the coverage inflation (or deflation) suffered by standard conformal inferences in the presence of label contamination, which is then made actionable through a new calibration algorithm. Our solution can leverage different modelling assumptions about the contamination process, while requiring no knowledge of the underlying data distribution or of the inner workings of the classification model. The empirical performance of the proposed method is demonstrated through simulations and an application to object classification with the CIFAR-10H image data set. 
                        more » 
                        « less   
                    
                            
                            Improving Expert Predictions with Conformal Prediction
                        
                    
    
            Automated decision support systems promise to help human experts solve multiclass classification tasks more efficiently and accurately. However, existing systems typically require experts to understand when to cede agency to the system or when to exercise their own agency. Otherwise, the experts may be better off solving the classification tasks on their own. In this work, we develop an automated decision support system that, by design, does not require experts to understand when to trust the system to improve performance. Rather than providing (single) label predictions and letting experts decide when to trust these predictions, our system provides sets of label predictions constructed using conformal prediction—prediction sets—and forcefully asks experts to predict labels from these sets. By using conformal prediction, our system can precisely trade-off the probability that the true label is not in the prediction set, which determines how frequently our system will mislead the experts, and the size of the prediction set, which determines the difficulty of the classification task the experts need to solve using our system. In addition, we develop an efficient and near-optimal search method to find the conformal predictor under which the experts benefit the most from using our system. Simulation experiments using synthetic and real expert predictions demonstrate that our system may help experts make more accurate predictions and is robust to the accuracy of the classifier the conformal predictor relies on. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2008139
- PAR ID:
- 10466308
- Date Published:
- Journal Name:
- International Conference on Machine Learning
- Volume:
- 202
- Page Range / eLocation ID:
- 32633-32653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The rise of complex AI systems in healthcare and other sectors has led to a growing area of research called Explainable AI (XAI) designed to increase transparency. In this area, quantitative and qualitative studies focus on improving user trust and task performance by providing system- and prediction-level XAI features. We analyze stakeholder engagement events (interviews and workshops) on the use of AI for kidney transplantation. From this we identify themes which we use to frame a scoping literature review on current XAI features. The stakeholder engagement process lasted over nine months covering three stakeholder group's workflows, determining where AI could intervene and assessing a mock XAI decision support system. Based on the stakeholder engagement, we identify four major themes relevant to designing XAI systems – 1) use of AI predictions, 2) information included in AI predictions, 3) personalization of AI predictions for individual differences, and 4) customizing AI predictions for specific cases. Using these themes, our scoping literature review finds that providing AI predictions before, during, or after decision-making could be beneficial depending on the complexity of the stakeholder's task. Additionally, expert stakeholders like surgeons prefer minimal to no XAI features, AI prediction, and uncertainty estimates for easy use cases. However, almost all stakeholders prefer to have optional XAI features to review when needed, especially in hard-to-predict cases. The literature also suggests that providing both system and prediction-level information is necessary to build the user's mental model of the system appropriately. Although XAI features improve users' trust in the system, human-AI team performance is not always enhanced. Overall, stakeholders prefer to have agency over the XAI interface to control the level of information based on their needs and task complexity. We conclude with suggestions for future research, especially on customizing XAI features based on preferences and tasks.more » « less
- 
            Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed coverage using any predictive model, under the assumption that the training and test data are i.i.d.. Recently, it has been shown that adversarial examples are able to manipulate conformal methods to construct prediction sets with invalid coverage rates, as the i.i.d. assumption is violated. To address this issue, a recent work, Randomized Smoothed Conformal Prediction (RSCP), was first proposed to certify the robustness of conformal prediction methods to adversarial noise. However, RSCP has two major limitations: (i) its robustness guarantee is flawed when used in practice and (ii) it tends to produce large uncertainty sets. To address these limitations, we first propose a novel framework called RSCP+ to provide provable robustness guarantee in evaluation, which fixes the issues in the original RSCP method. Next, we propose two novel methods, Post-Training Transformation (PTT) and Robust Conformal Training (RCT), to effectively reduce prediction set size with little computation overhead. Experimental results in CIFAR10, CIFAR100, and ImageNet suggest the baseline method only yields trivial predictions including full label set, while our methods could boost the efficiency by up to 4.36×, 5.46×, and 16.9× respectively and provide practical robustness guarantee.more » « less
- 
            Published research highlights the presence of demographic bias in automated facial attribute classification algorithms, particularly impacting women and individuals with darker skin tones. Existing bias mitigation techniques typically require demographic annotations and often obtain a trade-off between fairness and accuracy, i.e., Pareto inefficiency. Facial attributes, whether common ones like gender or others such as "chubby" or "high cheekbones", exhibit high interclass similarity and intraclass variation across demographics leading to unequal accuracy. This requires the use of local and subtle cues using fine-grained analysis for differentiation. This paper proposes a novel approach to fair facial attribute classification by framing it as a fine-grained classification problem. Our approach effectively integrates both low-level local features (like edges and color) and high-level semantic features (like shapes and structures) through cross-layer mutual attention learning. Here, shallow to deep CNN layers function as experts, offering category predictions and attention regions. An exhaustive evaluation on facial attribute annotated datasets demonstrates that our FineFACE model improves accuracy by $$1.32\%$$ to $$1.74\%$$ and fairness by $$67\%$$ to $$83.6\%$$, over the SOTA bias mitigation techniques. Importantly, our approach obtains a Pareto-efficient balance between accuracy and fairness between demographic groups. In addition, our approach does not require demographic annotations and is applicable to diverse downstream classification tasks. To facilitate reproducibility, the code and dataset information is available at~\url{https://github.com/VCBSL-Fairness/FineFACE}.more » « less
- 
            NA (Ed.)Facial attribute classification algorithms frequently manifest demographic biases by obtaining differential performance across gender and racial groups. Existing bias mitigation techniques are mostly in-processing techniques, i.e., implemented during the classifier’s training stage, that often lack generalizability, require demographically annotated training sets, and exhibit a trade-off between fairness and classification accuracy. In this paper, we propose a technique to mitigate bias at the test time i.e., during the deployment stage, by harnessing prediction uncertainty and human–machine partnership. To this front, we propose to utilize those lowest percentages of test data samples identified as outliers with high prediction uncertainty. These identified uncertain samples at test-time are labeled by human analysts for decision rendering and for subsequently retraining the deep neural network in a continual learning framework. With minimal human involvement and through iterative refinement of the network with human guidance at test-time, we seek to enhance the accuracy as well as the fairness of the already deployed facial attribute classification algorithms. Extensive experiments are conducted on gender and smile attribute classification tasks using four publicly available datasets and with gender and race as the protected attributes. The obtained outcomes consistently demonstrate improved accuracy by up to 2% and 5% for the gender and smile attribute classification tasks, respectively, using our proposed approaches. Further, the demographic bias was significantly reduced, outperforming the State-of-the-Art (SOTA) bias mitigation and baseline techniques by up to 55% for both classification tasks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    