skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detecting Vehicle Illegal Parking Events using Sharing Bikes' Trajectories
Illegal vehicle parking is a common urban problem faced by major cities in the world, as it incurs traffic jams, which lead to air pollution and traffic accidents. Traditional approaches to detect illegal parking events rely highly on active human efforts. However, these approaches are extremely ineffective to cover a large city. The massive and high quality sharing bike trajectories from Mo- bike offer us with a unique opportunity to design a ubiquitous illegal parking detection system, as most of the illegal parking events happen at curbsides and have significant impact on the bike users. Two main components are employed in the proposed illegal park- ing detection system: 1) trajectory pre-processing, which filters outlier GPS points, performs map-matching and builds trajectory indexes; and 2) illegal parking detection, which models the normal trajectories, extracts features from the evaluation trajectories and utilizes a distribution test-based method to discover the illegal parking events. The system is deployed on the cloud, and used by Mo- bike internally. Finally, extensive experiments and many insightful case studies are presented.  more » « less
Award ID(s):
1657350
PAR ID:
10098317
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
Page Range / eLocation ID:
340 to 349
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cycling as a green transportation mode has been promoted by many governments all over the world. As a result, constructing effective bike lanes has become a crucial task to promote the cycling life style, as well-planned bike lanes can reduce traffic congestions and safety risks. Unfortunately, existing trajectory mining approaches for bike lane planning do not consider one or more key realistic government constraints: 1) budget limitations, 2) construction convenience, and 3) bike lane utilization. In this paper, we propose a data-driven approach to develop bike lane construction plans based on the large-scale real world bike trajectory data collected from Mobike, a station-less bike sharing system. We enforce these constraints to formulate our problem and introduce a flexible objective function to tune the benefit between coverage of users and the length of their trajectories. We prove the NP-hardness of the problem and propose greedy-based heuristics to address it. To improve the efficiency of the bike lane planning system for the urban planner, we propose a novel trajectory indexing structure and deploy the system based on a parallel computing framework (Storm) to improve the system’s efficiency. Finally, extensive experiments and case studies are provided to demonstrate the system efficiency and effectiveness. 
    more » « less
  2. Cycling as a green transportation mode has been promoted by many governments all over the world. As a result, constructing effective bike lanes has become a crucial task for governments promoting the cycling life style, as well-planned bike paths can reduce traffic congestion and decrease safety risks for both cyclists and motor vehicle drivers. Unfortunately, existing trajectory mining approaches for bike lane planning do not consider key realistic government constraints: 1) budget limitations, 2) construction convenience, and 3) bike lane utilization. In this paper, we propose a data-driven approach to develop bike lane construction plans based on large-scale real world bike trajectory data. We enforce these constraints to formulate our problem and introduce a flexible objective function to tune the benefit between coverage of the number of users and the length of their trajectories. We prove the NP-hardness of the problem and propose greedy-based heuristics to address it. Finally, we deploy our system on Microsoft Azure, providing extensive experiments and case studies to demonstrate the effectiveness of our approach. 
    more » « less
  3. The smart parking industry continues to evolve as an increasing number of cities struggle with traffic congestion and inadequate parking availability. For urban dwellers, few things are more irritating than anxiously searching for a parking space. Research results show that as much as 30% of traffic is caused by drivers driving around looking for parking spaces in congested city areas. There has been considerable activity among researchers to develop smart technologies that can help drivers find a parking spot with greater ease, not only reducing traffic congestion but also the subsequent air pollution. Many existing solutions deploy sensors in every parking spot to address the automatic parking spot detection problems. However, the device and deployment costs are very high, especially for some large and old parking structures. A wide variety of other technological innovations are beginning to enable more adaptable systems-including license plate number detection, smart parking meter, and vision-based parking spot detection. In this paper, we propose to design a more adaptable and affordable smart parking system via distributed cameras, edge computing, data analytics, and advanced deep learning algorithms. Specifically, we deploy cameras with zoom-lens and motorized head to capture license plate numbers by tracking the vehicles when they enter or leave the parking lot; cameras with wide angle fish-eye lens will monitor the large parking lot via our custom designed deep neural network. We further optimize the algorithm and enable the real-time deep learning inference in an edge device. Through the intelligent algorithm, we can significantly reduce the cost of existing systems, while achieving a more adaptable solution. For example, our system can automatically detect when a car enters the parking space, the location of the parking spot, and precisely charge the parking fee and associate this with the license plate number. 
    more » « less
  4. null (Ed.)
    High-resolution vehicle trajectory data can be used to generate a wide range of performance measures and facilitate many smart mobility applications for traffic operations and management. In this paper, a Longitudinal Scanline LiDAR-Camera model is explored for trajectory extraction at urban arterial intersections. The proposed model can efficiently detect vehicle trajectories under the complex, noisy conditions (e.g., hanging cables, lane markings, crossing traffic) typical of an arterial intersection environment. Traces within video footage are then converted into trajectories in world coordinates by matching a video image with a 3D LiDAR (Light Detection and Ranging) model through key infrastructure points. Using 3D LiDAR data will significantly improve the camera calibration process for real-world trajectory extraction. The pan-tilt-zoom effects of the traffic camera can be handled automatically by a proposed motion estimation algorithm. The results demonstrate the potential of integrating longitudinal-scanline-based vehicle trajectory detection and the 3D LiDAR point cloud to provide lane-by-lane high-resolution trajectory data. The resulting system has the potential to become a low-cost but reliable measure for future smart mobility systems. 
    more » « less
  5. In the current data-centered era, there are many highly diverse data sources that provide information about movement on networks, such as GPS trajectories, traffic flow measurements, farecard data, pedestrian cameras, bike-share data and even geo-social movement trajectories. The challenge identified in this vision paper is to create a unified framework for aggregating and analyzing such diverse and uncertain movement data on networks. This requires probabilistic models to capture flow/volume and movement probabilities on a network over time. Novel algorithms are required to train these models from datasets with varying levels of uncertainty. By combining information from different networks, immediate applications of such a unifying movement model include optimal site planning, map construction, traffic management, and emergency management. 
    more » « less