- Award ID(s):
- 1657350
- PAR ID:
- 10098317
- Date Published:
- Journal Name:
- the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
- Page Range / eLocation ID:
- 340 to 349
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Cycling as a green transportation mode has been promoted by many governments all over the world. As a result, constructing effective bike lanes has become a crucial task to promote the cycling life style, as well-planned bike lanes can reduce traffic congestions and safety risks. Unfortunately, existing trajectory mining approaches for bike lane planning do not consider one or more key realistic government constraints: 1) budget limitations, 2) construction convenience, and 3) bike lane utilization. In this paper, we propose a data-driven approach to develop bike lane construction plans based on the large-scale real world bike trajectory data collected from Mobike, a station-less bike sharing system. We enforce these constraints to formulate our problem and introduce a flexible objective function to tune the benefit between coverage of users and the length of their trajectories. We prove the NP-hardness of the problem and propose greedy-based heuristics to address it. To improve the efficiency of the bike lane planning system for the urban planner, we propose a novel trajectory indexing structure and deploy the system based on a parallel computing framework (Storm) to improve the system’s efficiency. Finally, extensive experiments and case studies are provided to demonstrate the system efficiency and effectiveness.more » « less
-
Cycling as a green transportation mode has been promoted by many governments all over the world. As a result, constructing effective bike lanes has become a crucial task for governments promoting the cycling life style, as well-planned bike paths can reduce traffic congestion and decrease safety risks for both cyclists and motor vehicle drivers. Unfortunately, existing trajectory mining approaches for bike lane planning do not consider key realistic government constraints: 1) budget limitations, 2) construction convenience, and 3) bike lane utilization. In this paper, we propose a data-driven approach to develop bike lane construction plans based on large-scale real world bike trajectory data. We enforce these constraints to formulate our problem and introduce a flexible objective function to tune the benefit between coverage of the number of users and the length of their trajectories. We prove the NP-hardness of the problem and propose greedy-based heuristics to address it. Finally, we deploy our system on Microsoft Azure, providing extensive experiments and case studies to demonstrate the effectiveness of our approach.more » « less
-
The smart parking industry continues to evolve as an increasing number of cities struggle with traffic congestion and inadequate parking availability. For urban dwellers, few things are more irritating than anxiously searching for a parking space. Research results show that as much as 30% of traffic is caused by drivers driving around looking for parking spaces in congested city areas. There has been considerable activity among researchers to develop smart technologies that can help drivers find a parking spot with greater ease, not only reducing traffic congestion but also the subsequent air pollution. Many existing solutions deploy sensors in every parking spot to address the automatic parking spot detection problems. However, the device and deployment costs are very high, especially for some large and old parking structures. A wide variety of other technological innovations are beginning to enable more adaptable systems-including license plate number detection, smart parking meter, and vision-based parking spot detection. In this paper, we propose to design a more adaptable and affordable smart parking system via distributed cameras, edge computing, data analytics, and advanced deep learning algorithms. Specifically, we deploy cameras with zoom-lens and motorized head to capture license plate numbers by tracking the vehicles when they enter or leave the parking lot; cameras with wide angle fish-eye lens will monitor the large parking lot via our custom designed deep neural network. We further optimize the algorithm and enable the real-time deep learning inference in an edge device. Through the intelligent algorithm, we can significantly reduce the cost of existing systems, while achieving a more adaptable solution. For example, our system can automatically detect when a car enters the parking space, the location of the parking spot, and precisely charge the parking fee and associate this with the license plate number.more » « less
-
A planned special event (PSE), such as a sports game or a concert, can greatly affect the normal operations of a transportation system. To facilitate traffic, the road network is usually reconfigured, which could include road closures, reversed lanes, and limited access to parking facilities. For recurring PSEs, event-goers are often provided with recommended routes to designated parking areas in advance. Such network reconfiguration and route and parking recommendations are, however, often ad hoc in practice. This paper focuses on the PSE traffic planning problem. We propose to simultaneously consider parking, ridesharing, and network configuration. The problem is formulated as an optimization problem with integer decision variables. We developed a flow-based traffic simulation tool that is able to incorporate parking and lane changing (which cannot be ignored around ridesharing drop-off locations) to evaluate the objective function. We also developed effective and efficient heuristic solution algorithms. The models and algorithms are tested using the real network and traffic data from Super Bowl XLIX in 2015. The results show that our methods and approaches are able to produce an effective comprehensive traffic plan with reasonable computation time. For the Super Bowl XLIX case study, the resulting optimal plan is able to save 39.6% of the total vehicle-hours associated with default network configurations. Sensitivity analysis has also been conducted with respect to the compliance rate of travelers following recommended routes. It is found that the resulting near-optimal PSE traffic plans are able to tolerate some uncertainty in the compliance rate.
-
null (Ed.)High-resolution vehicle trajectory data can be used to generate a wide range of performance measures and facilitate many smart mobility applications for traffic operations and management. In this paper, a Longitudinal Scanline LiDAR-Camera model is explored for trajectory extraction at urban arterial intersections. The proposed model can efficiently detect vehicle trajectories under the complex, noisy conditions (e.g., hanging cables, lane markings, crossing traffic) typical of an arterial intersection environment. Traces within video footage are then converted into trajectories in world coordinates by matching a video image with a 3D LiDAR (Light Detection and Ranging) model through key infrastructure points. Using 3D LiDAR data will significantly improve the camera calibration process for real-world trajectory extraction. The pan-tilt-zoom effects of the traffic camera can be handled automatically by a proposed motion estimation algorithm. The results demonstrate the potential of integrating longitudinal-scanline-based vehicle trajectory detection and the 3D LiDAR point cloud to provide lane-by-lane high-resolution trajectory data. The resulting system has the potential to become a low-cost but reliable measure for future smart mobility systems.more » « less