skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PAC-Wrap: Semi-Supervised PAC Anomaly Detection
Award ID(s):
2125561
PAR ID:
10466898
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9781450393850
Page Range / eLocation ID:
945 to 955
Format(s):
Medium: X
Location:
Washington DC USA
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a collaborative PAC learning model, in which k players attempt to learn the same underlying concept. We ask how much more information is required to learn an accurate classifier for all players simultaneously. We refer to the ratio between the sample complexity of collaborative PAC learning and its non-collaborative (single-player) counterpart as the overhead. We design learning algorithms with O(ln(k)) and O(ln2 (k)) overhead in the personalized and centralized variants our model. This gives an exponential improvement upon the naïve algorithm that does not share information among players. We complement our upper bounds with an Ω(ln(k)) overhead lower bound, showing that our results are tight up to a logarithmic factor. 
    more » « less
  2. This work studies an approach for computing provably robust control laws for robotic systems operating in uncertain environments. We develop an actor-critic style policy search algorithm based on the idea of minimizing an upper confidence bound on the negative expected advantage of a control policy at each policy update iteration. This new algorithm is a reformulation of Probably-Approximately-Correct Robust Policy Search (PROPS) and, unlike PROPS, allows for both step-based evaluation and step-based sampling strategies in policy parameter space, enabled by the use of Generalized Advantage Estimation and Generalized Exploration. As a result, the new algorithm is more data efficient and is expected to compute higher quality policies faster. We empirically evaluate the algorithm in simulation on a challenging robot navigation task using a high-fidelity deep stochastic model of an agile ground vehicle and compare its performance to the original trajectory-based PROPS 
    more » « less