skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First data on water mite (Acari, Hydrachnidia) assemblages of Point Rosa Marsh, Harrison Township, Michigan, USA,and their use as environmental bioindicators of aquatic health
Water mites are aquatic arachnids that have been used in Europe and Central America as bioindicators of ecological health in various freshwater ecosystems (including bogs). Water mites can be found in high densities in the Laurentian Great Lakes and adjacent habitats. Although they are abundant, water mites are generally not used in the assessment of aquatic habitats in the Great Lakes and are usually assigned to the “other” category in macroinvertebrate assessments. This is despite evidence of their utility as aquatic bioindicators. In the present study we consider water mites as bioindicators of the environmental health of Point Rosa marsh, a threatened marsh found on the US side of transboundary Lake St. Clair. The abundance of water mites in Point Rosa Marsh increased from 2017 to 2019 as lake water levels increased. Although increasing water levels in Lake St. Clair can be considered a negative event due to loss of irreplaceable coastal habitat by erosion with potential economic impacts, this present study indicates that water mite populations in Point Rosa Marsh increased during the same period (2017 to 2019). As a result of our study we: update the biodiversity of water mites from Lake St. Clair with new records compared to the last report from the lake over 45 years ago, first report on water mite assemblages at Point Rosa marsh at the Lake St. Clair Metropark on Lake St. Clair and the first demonstration of water mites used as bioindicators in the habitats of the Laurentian Great Lakes.  more » « less
Award ID(s):
1735038
PAR ID:
10467343
Author(s) / Creator(s):
; ;
Publisher / Repository:
Acarologia
Date Published:
Journal Name:
Acarologia
Volume:
62
Issue:
3
ISSN:
0044-586X
Page Range / eLocation ID:
653 to 665
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Depth regulates many attributes of aquatic ecosystems, but relatively few lakes are measured, and existing datasets are biased toward large lakes. To address this, we used a large dataset of maximum (Zmax;n = 16,831) and mean (Zmean;n = 5,881) depth observations to create new depth models, focusing on lakes < 1,000 ha. We then used the models to characterize patterns in lake basin shape and volume. We included terrain metrics, water temperature and reflectance, polygon attributes, and other predictors in a random forest model. Our final models generally outperformed existing models (Zmax; root mean square error [RMSE] = 8.0 m andZmean; RMSE = 3.0 m). Our models show that lake depth followed a Pareto distribution, with 2.8 orders of magnitude fewer lakes for an order of magnitude increase in depth. In addition, despite orders of magnitude variation in surface area, most size classes had a modal maximum depth of ~ 5 m. Concave (bowl‐shaped) lake basins represented 79% of all lakes, but lakes were more convex (funnel‐shaped) as surface area increased. Across the conterminous United States, 9.8% of all lake water was within the top meter of the water column, and 48% in the top 10 m. Excluding the Laurentian Great Lakes, we estimate the total volume in the conterminous United States is 1,057–1,294 km3, depending on whetherZmaxorZmeanwas modeled. Lake volume also exhibited substantial geographic variation, with high volumes in the upper Midwest, Northeast, and Florida and low volumes in the southwestern United States. 
    more » « less
  2. The South American palm weevil, Rhynchophorus palmarum (Coleoptera: Curculionidae), established in San Diego County, California, USA sometime around 2014. Attached to the motile adults of this destructive palm pest, we identified three species of uropodine mites (Parasitiformes: Uropodina), Centrouropoda n. sp., Dinychus n. sp. and Fuscuropoda marginata. Two of these species, Centrouropoda n. sp. and Dinychus n. sp. are recorded for the first time in the USA and were likely introduced by R. palmarum. Several species of mites, primarily of Uropodina, have previously been recorded as phoretic on Rhynchophorus spp. In this study, we examined 3,035 adult R. palmarum trapped over a 2.5-year period, July 2016 to December 2018, and documented the presence of and species composition of phoretic mites and their relationship with weevil morphometrics (i.e., pronotum length and width). The presence and species composition of mites on weevil body parts changed over the survey period. No mites were found under weevil elytra in 2016 and mite prevalence under elytra increased over 2017–2018 due to an increased abundance of Centrouropoda n. sp per individual beetle. Mite occurrence levels were significantly correlated with reduced pronotum widths of male weevils only. The significance of this finding on male weevil fitness is unknown. Potential implications of phoretic mites on aspects of the invasion biology of R. palmarum are discussed. 
    more » « less
  3. Giovannoni, Stephen J. (Ed.)
    ABSTRACT Microbial nitrification is a critical process governing nitrogen availability in aquatic systems. Freshwater nitrifiers have received little attention, leaving many unanswered questions about their taxonomic distribution, functional potential, and ecological interactions. Here, we reconstructed genomes to infer the metabolism and ecology of free-living picoplanktonic nitrifiers across the Laurentian Great Lakes, a connected series of five of Earth’s largest lakes. Surprisingly, ammonia-oxidizing bacteria (AOB) related to Nitrosospira dominated over ammonia-oxidizing archaea (AOA) at nearly all stations, with distinct ecotypes prevailing in the transparent, oligotrophic upper lakes compared to Lakes Erie and Ontario. Unexpectedly, one ecotype of Nitrosospira encodes proteorhodopsin, which could enhance survival under conditions where ammonia oxidation is inhibited or substrate limited. Nitrite-oxidizing bacteria (NOB) “ Candidatus Nitrotoga” and Nitrospira fluctuated in dominance, with the latter prevailing in deeper, less-productive basins. Genome reconstructions reveal highly reduced genomes and features consistent with genome streamlining, along with diverse adaptations to sunlight and oxidative stress and widespread capacity for organic nitrogen use. Our findings expand the known functional diversity of nitrifiers and establish their ecological genomics in large lake ecosystems. By elucidating links between microbial biodiversity and biogeochemical cycling, our work also informs ecosystem models of the Laurentian Great Lakes, a critical freshwater resource experiencing rapid environmental change. IMPORTANCE Microorganisms play critical roles in Earth’s nitrogen cycle. In lakes, microorganisms called nitrifiers derive energy from reduced nitrogen compounds. In doing so, they transform nitrogen into a form that can ultimately be lost to the atmosphere by a process called denitrification, which helps mitigate nitrogen pollution from fertilizer runoff and sewage. Despite their importance, freshwater nitrifiers are virtually unexplored. To understand their diversity and function, we reconstructed genomes of freshwater nitrifiers across some of Earth’s largest freshwater lakes, the Laurentian Great Lakes. We discovered several new species of nitrifiers specialized for clear low-nutrient waters and distinct species in comparatively turbid Lake Erie. Surprisingly, one species may be able to harness light energy by using a protein called proteorhodopsin, despite the fact that nitrifiers typically live in deep dark water. Our work reveals the unique biodiversity of the Great Lakes and fills key gaps in our knowledge of an important microbial group, the nitrifiers. 
    more » « less
  4. The Laurentian Great Lakes (hereafter the Great Lakes) comprise the world’s largest surface freshwater system. Over the past two decades, water levels in the Great Lakes have fluctuated drastically, reaching both record highs and lows. Accurate water level forecasting is critical due to the extensive ecosystem and millions of US and Canadian citizens that rely on this valuable resource. One of the most dominant variables for water supply in any freshwater system is surface runoff, which is directly impacted by precipitation amount, type, magnitude, and timing across the system’s land surfaces. Lake Superior, the most upstream of the Great Lakes, receives the greatest amount of seasonal snowfall annually out of all the great Lakes. This snowfall affects both the timing and quantity of runoff into the Great Lakes system and impacts the water supply of the Great Lakes. In this study, I analyzed the patterns of snow water equivalent and its effect on surface runoff in the Lake Superior basin. My results indicate important changes in snow water equivalent and runoff patterns over time. Specifically, I found that, as of 1971, maximum seasonal snow water equivalent is occurring on average 12 days earlier in the spring season. I also found that maximum seasonal runoff is occurring earlier; however, the change in the timing of peak runoff occurred in 1983 and is found to now be on average 11 days earlier than it was before 1983. By advancing an understanding of these relationships and ensuring they are reflected in state-of-the-art modeling systems, I provided critical information for improving the skill of water level forecasts and preparing water managers and communities for future hydrologic changes, including those associated with climate change. 
    more » « less
  5. Abstract Obovaria olivariais a species of freshwater mussel native to the Mississippi River and Laurentian Great Lakes‐St. Lawrence River drainages of North America. This mussel has experienced population declines across large parts of its distribution and is imperiled in many jurisdictions.Obovaria olivariauses the similarly imperiledAcipenser fulvescens(Lake Sturgeon) as a host for its glochidia. We employed mitochondrial DNA sequencing and restriction site‐associated DNA sequencing (RAD‐seq) to assess patterns of genetic diversity and population structure ofO. olivariafrom 19 collection locations including the St. Lawrence River drainage, the Great Lakes drainage, the Upper Mississippi River drainage, the Ohioan River drainage, and the Mississippi Embayment. Heterozygosity was highest in Upper Mississippi and Great Lakes populations, followed by a reduction in diversity and relative effective population size in the St. Lawrence populations. PairwiseFSTranged from 0.00 to 0.20, and analyses of genetic structure revealed two major ancestral populations, one including all St. Lawrence River/Ottawa River sites and the other including remaining sites; however, significant admixture and isolation by river distance across the range were evident. The genetic diversity and structure ofO. olivariais consistent with the existing literature onAcipenser fulvescensand suggests that, although northern and southernO. olivariapopulations are genetically distinct, genetic structure inO. olivariais largely clinal rather than discrete across its range. Conservation and restoration efforts ofO. olivariashould prioritize the maintenance and restoration of locations whereO. olivariaremain, especially in northern rivers, and to ensure connectivity that will facilitate dispersal ofAcipenser fulvescensand movement of encysted glochidia. 
    more » « less