Abstract Death assemblages (DAs) are increasingly recognized as a valuable source to reconstruct past ecological baselines, due to the accumulation of skeletal material of non-contemporaneous cohorts. We here quantify the age and time-averaging of DAs on shallow subtidal (5–25 m) rocky substrates and in meadows ofPosidonia oceanicain the eastern Mediterranean. We show that such DAs are very young – median ages 9–56 years – with limited time-averaging, one to two orders of magnitude less than on even nearby soft substrates. On rocky substrates, out-of-habitat transport is likely the main cause of loss of older shells. InPosidonia oceanicameadows, the root and rhizome system creates a dense structure – thematte– that quickly entangles and buries shells and limits the potential for bioturbation. Thematteis, however, a peculiar feature ofPosidonia oceanica, and age and time-averaging in meadows of other seagrass species may be different. The young age of DAs in these habitats requires a careful consideration of their appropriateness as baselines. The large difference in DA age between soft substrates, subject to numerous studies, and hard and seagrass substrates, rarely inspected with geochronological techniques, implies that DA dating is important for studies aiming at using DAs as baselines. 
                        more » 
                        « less   
                    
                            
                            Age variability and decadal time-averaging in oyster reef death assemblages
                        
                    
    
            Using paleoecological data to inform resource management decisions is challenging without an understanding of the ages and degrees of time-averaging in molluscan death assemblage (DA) samples. We illustrate this challenge by documenting the spatial and stratigraphic variability in age and time-averaging of oyster reef DAs. By radiocarbon dating a total of 630 oyster shells from samples at two burial depths on 31 oyster reefs around Florida, southeastern United States, we found that (1) spatial and stratigraphic variability in DA sample ages and time-averaging is of similar magnitude, and (2) the shallow oyster reef DAs are among the youngest and highest-resolution molluscan DAs documented to date, with most having decadal-scale time-averaging estimates, and sometimes less. This information increases the potential utility of the DAs for habitat management because DA data can be placed in a more specific temporal context relative to real-time monitoring data. More broadly, the results highlight the potential to obtain decadal-scale resolution from oyster bioherms in the fossil record. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10467931
- Publisher / Repository:
- The Geological Society of America
- Date Published:
- Journal Name:
- Geology
- ISSN:
- 0091-7613
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Foundation species, such as mangroves, saltmarshes, kelps, seagrasses, and oysters, thrive within suitable environmental envelopes as narrow ribbons along the land–sea margin. Therefore, these habitat‐forming species and resident fauna are sensitive to modified environmental gradients. For oysters, many estuaries impacted by sea‐level rise, channelization, and municipal infrastructure are experiencing saltwater intrusion and water‐quality degradation that may alter reef distributions, functions, and services. To explore decadal‐scale oyster–reef community patterns across a temperate estuary in response to environmental change, we resampled reefs in the Newport River Estuary (NRE) during 2013–2015 that had previously been studied during 1955–1956. We also coalesced historical NRE reef distribution (1880s–2015), salinity (1913–2015), and water‐quality‐driven shellfish closure boundary (1970s–2015) data to document environmental trends that could influence reef ecology and service delivery. Over the last 60–120 years, the entire NRE has shifted toward higher salinities. Consequently, oyster–reef communities have become less distinct across the estuary, manifest by 20%–27% lower species turnover and decreased faunal richness among NRE reefs in the 2010s relative to the 1950s. During the 2010s, NRE oyster–reef communities tended to cluster around a euhaline, intertidal‐reef type more so than during the 1950s. This followed faunal expansions farther up estuary and biological degradation of subtidal reefs as NRE conditions became more marine and favorable for aggressive, reef‐destroying taxa. In addition to these biological shifts, the area of suitable bottom on which subtidal reefs persist (contracting due to up‐estuary intrusion of marine waters) and support human harvest (driven by water quality, eroding from up‐estuary) has decreased by >75% since the natural history of NRE reefs was first explored. This “coastal squeeze” on harvestable subtidal oysters (reduced from a 4.5‐km to a 0.75‐km envelope along the NRE's main axis) will likely have consequences regarding the economic incentives for future oyster conservation, as well as the suite of services delivered by remaining shellfish reefs (e.g., biodiversity maintenance, seafood supply). More broadly, these findings exemplify how “squeeze” may be a pervasive concern for biogenic habitats along terrestrial or marine ecotones during an era of intense global change.more » « less
- 
            null (Ed.)The eastern oyster ( Crassostrea virginica ) is an important proxy for examining historical trajectories of coastal ecosystems. Measurement of ~40,000 oyster shells from archaeological sites along the Atlantic Coast of the United States provides a long-term record of oyster abundance and size. The data demonstrate increases in oyster size across time and a nonrandom pattern in their distributions across sites. We attribute this variation to processes related to Native American fishing rights and environmental variability. Mean oyster length is correlated with total oyster bed length within foraging radii (5 and 10 km) as mapped in 1889 and 1890. These data demonstrate the stability of oyster reefs despite different population densities and environmental shifts and have implications for oyster reef restoration in an age of global climate change.more » « less
- 
            This dataset contains measurements of Eastern oyster (Crassostrea virginica) recruitment to standardized ceramic tiles deployed across intertidal oyster reef sites in the Virginia Coast Reserve. Recruitment is defined as the number of macroscopic oyster recruits (less than or equal to 25 mm shell height) per square centimeter of tile surface, capturing settlement and early post-settlement survival. Data were collected in 2018, 2019, and 2021 across 9-16 reef sites per year, including both natural and restored reefs. The dataset supports research on spatial and environmental drivers of oyster recruitment and has been validated against natural reef substrate data for comparability.more » « less
- 
            The structural complexity of oyster reef canopy plays a major role in promoting biodiversity, balancing the sediment budget, and modulating hydrodynamics in estuarine systems. Although oyster canopy structure is both spatially and temporally heterogeneous, oyster canopies are generally characterized using simple first‐order quantities, like oyster density, which may lack the ability to sufficiently parameterize reef roughness. In this study, a novel laser‐scan approach was used to map the surface of intact reference and restored reefs (restoration age: 1–4 years) during low tide, when the oyster canopy was fully exposed. Measurements were used to estimate hydrodynamically relevant roughness characteristics over the entire reef surface (>140 m2; 0.50 m resolution), providing estimates of the canopy height (hc), standard deviation (), rugosity index (R), and fractal dimension (D). Average canopy heights ranged from 3.6 to 4.9 cm, with canopy height standard deviations between 1.4 and 2.0 cm. Mean rugosity indices and fractal dimensions were relatively low on the youngest (1 year) restored reef (R = 1.28;D = 2.67), with substantial increases observed for more mature reef canopies (4 years:R = 1.56;D = 2.71). Structural complexity was consistently greater on reef margins than in reef interiors. Increases in complexity were linked to restoration age, with older reefs exhibiting more complex oyster canopies. The highest fractal dimension was observed on the intact reference reef, highlighting the importance of sustained reef growth for maintaining higher‐order structural complexity. Results provide spatially explicit surface roughness characterizations for healthy, intertidal oyster reefs, with applications in both restoration science and natural and nature‐based feature design.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    