Islands in the tropical Pacific supply elevated nutrients to nearshore waters that enhance phytoplankton biomass and create hotspots of productivity in otherwise nutrient-poor oceans. Despite the importance of these hotspots in supporting nearshore food webs, the fine-scale spatial and temporal variability of phytoplankton enhancement and changes in the underlying phytoplankton communities across nearshore to open ocean systems remain poorly understood. In this study, a combination of flow cytometry, pigment analyses, 16S rRNA gene amplicons, and metagenomic sequencing provide a synoptic view of phytoplankton dynamics over a four-year, near-monthly time-series across coastal Kāneʻohe Bay, Hawaiʻi, spanning from an estuarine Indigenous aquaculture system to the adjacent offshore environment. Through comparisons with measurements taken at Station ALOHA located in the oligotrophic North Pacific Subtropical Gyre, we elucidated a sharp and persistent transition between picocyanobacterial communities, from Synechococcus abundant in the nearshore to Prochlorococcus proliferating in offshore and open ocean waters. In comparison to immediately adjacent offshore waters and the surrounding open ocean, phytoplankton biomass within Kānʻeohe Bay was dramatically elevated. While phytoplankton community composition revealed strong seasonal patterns, phytoplankton biomass positively correlated with wind speeds, rainfall, and wind direction, and not water temperatures. These findings reveal sharp transitions in ocean biogeochemistry and phytoplankton dynamics across estuarine to open ocean waters in the tropical Pacific and provide a foundation for quantifying deviations from baseline conditions due to ongoing climate change.
more »
« less
Temperature variations in the northern Gulf of Alaska across synoptic to century-long time scales
Surface and subsurface moored buoy, ship-based, remotely sensed, and reanalysis datasets are used to investigate thermal variability of northern Gulf of Alaska (NGA) nearshore, coastal, and offshore waters over synoptic to century-long time scales. NGA sea surface temperature (SST) showed a larger positive trend of 0.22 ± 0.10 °C per decade over 1970–2021 compared to 0.10 ± 0.03 °C per decade over 1900–2021. Over synoptic time scales, SST covariance between two stations is small (<10%) when separation exceeds 100 km, while stations separated by 500 km retain 50% of their co-variability for seasonal and longer fluctuations. Relative to in situ sensor data, remotely sensed SST data has limited accuracy in some NGA settings, capturing 60–70% of the daily SST anomaly in coastal and offshore waters, but often <25% nearshore. North Pacific and NGA leading modes of SST variability leave 25–50% of monthly variance unresolved. Analysis of the 2014–2016 Pacific marine heatwave shows that NGA coastal surface temperatures warmed contemporaneously with offshore waters through 2013, but deep inner shelf waters (200–250 m) exhibited delayed warming. Offshore surface waters cooled from 2014 to 2016, while shelf waters continued to warm from the combined effects of local air-sea and advective heat fluxes. We find that annually averaged Sitka air temperature is a leading predictor (r2 = 0.37, p < 0.05) for following-year NGA coastal water column temperature. Our results can inform future environmental monitoring designs, assist forward-looking projections of marine conditions, and show the importance of in situ measurements for nearshore studies that require knowledge of thermal conditions over time scales of days and weeks.
more »
« less
- Award ID(s):
- 1656070
- PAR ID:
- 10468071
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Deep Sea Research Part II: Topical Studies in Oceanography
- Volume:
- 203
- Issue:
- C
- ISSN:
- 0967-0645
- Page Range / eLocation ID:
- 105155
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Islands in the tropical Pacific supply elevated nutrients to nearshore waters that enhance phytoplankton biomass and create hotspots of productivity in otherwise nutrient‐poor oceans. Despite the importance of these hotspots in supporting nearshore food webs, the spatial and temporal variability of phytoplankton enhancement and changes in the underlying phytoplankton communities across nearshore to open ocean systems remain poorly understood. In this study, a combination of flow cytometry, pigment analyses, 16S rRNA gene amplicons, and metagenomic sequencing provides a synoptic view of phytoplankton dynamics over a 4‐yr, near‐monthly time series across coastal Kāneʻohe Bay, Hawaiʻi, spanning from an estuarine Indigenous aquaculture system to the adjacent offshore environment. Through comparisons with measurements taken at Station ALOHA located in the oligotrophic North Pacific Subtropical Gyre, we observed a sharp and persistent transition between picocyanobacterial communities, fromSynechococcusclade II abundant in the nearshore toProchlorococcushigh‐light adapted clade II (HLII) proliferating in offshore and open ocean waters. In comparison to immediately adjacent offshore waters and the surrounding open ocean, phytoplankton biomass within Kāneʻohe Bay was dramatically elevated. Members of the phytoplankton community revealed strong seasonal patterns, while nearshore phytoplankton biomass positively correlated with wind speed, rainfall, and wind direction, and not water temperatures. These findings elucidate the spatiotemporal dynamics underlying transitions in ocean biogeochemistry and phytoplankton dynamics across estuarine to open ocean waters in the tropical Pacific and provide a foundation for quantifying deviations from baseline conditions due to ongoing climate change.more » « less
-
The biologically productive Northern Gulf of Alaska (NGA) continental shelf receives large inputs of freshwater from surrounding glaciated and non-glaciated watersheds, and a better characterization of the regional salinity spatiotemporal variability is important for understanding its fate and ecological roles. We here assess synoptic to seasonal distributions of freshwater pathways of the Copper River discharge plume and the greater NGA continental shelf and slope using observations from ship-based and towed undulating conductivity-temperaturedepth (CTD) instruments, satellite imagery, and satellite-tracked drifters. On the NGA continental shelf and slope we find low salinities not only nearshore but also 100–150 km from the coast (i.e. average 0–50 m salinities less than 31.9, 31.3, and 30.8 in spring, summer, and fall respectively) indicating recurring mid-shelf and shelfbreak freshwater pathways. Close to the Copper River, the shelf bathymetry decouples the spreading river plume from the direct effects of seafloor-induced steering and mixing, allowing iron- and silicic acid-rich river outflow to propagate offshore within a surface-trapped plume. Self-organized mapping analysis applied to true color satellite imagery reveals common patterns of the turbid river plume. We show that the Copper River plume is sensitive to local wind forcing and exerts control over water column stratification up to ~100 km from the river mouth. Upwelling-favorable wind stress modifies plume entrainment and density anomalies and plume width. Baroclinic transport of surface waters west of the river mouth closely follow the influence of alongshore wind stress, while baroclinic transport east of the river mouth is additionally modified by a recurring or persistent gyre. Our results provide context for considering the oceanic fate of terrestrial discharges in the Gulf of Alaska.more » « less
-
Abstract We analyzed impacts of the 2014–2015 Pacific Warm Anomaly and 2015–2016 El Niño on physical and biogeochemical variables at two southern California Current System moorings (CCE2, nearshore upwelling off Point Conception; CCE1, offshore California Current). Nitrate and Chl‐afluorescence were <1 μM and <1 Standardized Fluorescence Unit, respectively, at CCE2 for the entire durations of the Warm Anomaly and El Niño, the two longest periods of such low values in our time series. Negative nitrate and Chl‐aanomalies at CCE2 were interrupted briefly by upwelling conditions in spring 2015. Near‐surface temperature anomalies appeared simultaneously at both moorings in spring 2014, indicating region‐wide onset of Warm Anomaly temperatures, although sustained negative nitrate and Chl‐aanomalies only occurred offshore at CCE1 during El Niño (summer 2015 to spring 2016). Warm Anomaly temperature changes were expressed more strongly in near‐surface (<40 m) than subsurface (75 m) waters at both moorings, while El Niño produced comparable temperature anomalies at near‐surface and subsurface depths. Nearshore Ωaragoniteat 76 m showed notably fewer undersaturation events during both warm periods, suggesting an environment more conducive to calcifying organisms. Planktonic calcifying molluscs (pteropods and heteropods) increased markedly in springs 2014 and 2016 and remained modestly elevated in spring 2015. Moorings provide high‐frequency measurements essential for resolving the onset timing of anomalous conditions and frequency and duration of short‐term (days‐to‐weeks) perturbations (reduced nitrate and aragonite undersaturation events) that can affect marine organisms.more » « less
-
The interannual variability and trends of sea surface temperature (SST) around southern South America are studied from 1982 to 2017 using monthly values of the Optimally Interpolation SST version 2 gridded database. Mid-latitude (30°–50°S) regions in the eastern South Pacific and western South Atlantic present moderate to intense warming (~0.4°C decade −1 ), while south of 50°S the region around southern South America presents moderate cooling (~ −0.3°C decade −1 ). Two areas of statistically significant trends of SST anomalies (SSTa) with opposite sign are found on the Patagonian Shelf over the southwest South Atlantic: a warming area delimited between 42 and 45°S (Northern Patagonian Shelf; NPS), and a cooling area between 49 and 52°S (Southern Patagonian Shelf; SPS). Between 1982 and 2017 the warming rate has been 0.15 ± 0.01°C decade −1 representing an increase of 0.52°C at NPS, and the cooling rate has been –0.12 ± 0.01°C decade −1 representing a decrease of 0.42°C at SPS. On both regions, the largest trends are observed during 2008–2017 (0.35 ± 0.02°C decade −1 at NPS and –0.27 ± 0.03°C decade −1 at SPS), while the trends in 1982–2007 are non-significant, indicating the record-length SSTa trends are mostly associated with the variability observed during the past 10 years of the record. The spectra of the records present significant variance at interannual time scales, centered at about 80 months (~6 years). The observed variability of SSTa is studied in connection with atmospheric forcing (zonal and meridional wind components, wind speed, wind stress curl and surface heat fluxes). During 1982–2007, the local meridional wind explains 25–30% of the total variance at NPS and SPS on interannual time scales. During 2008–2017, the SSTa at NPS is significantly anticorrelated with the local zonal wind ( r = –0.85), while at SPS it is significantly anticorrelated with the meridional wind ( r = –0.61). Our results show that a substantial fraction of the interannual variability of SSTa around southern South America can be described by the first three empirical orthogonal function (EOF) modes which explain 28, 16, and 12% of the variance, respectively. The variability of the three EOF principal components time series is associated with the combined variability of El Niño–Southern Oscillation, the Interdecadal Pacific Oscillation and the Southern Annular Mode.more » « less
An official website of the United States government

