skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cobalt‐Catalyzed Decarboxylative Allylations: Development and Mechanistic Studies
Abstract In recent years, there has been a concerted drive to develop methods that are greener and more sustainable. Being an earth‐abundant transition metal, cobalt offers an attractive substitute for commonly employed precious metal catalysts, though reactions engaging cobalt are still less developed. Herein, we report a method to achieve the decarboxylative allylation of nitrophenyl alkanes, nitroalkanes, and ketones employing cobalt. The reaction allows for the formation of various substituted allylated products in moderate‐excellent yields with a broad scope. Additionally, the synthetic potential of the methodology is demonstrated by the transformation of products into versatile heterocyclic motifs. Mechanistic studies revealed an in situ activation of the Co(II)/dppBz precatalyst by the carboxylate salt to generate a Co(I)‐species, which is presumed to be the active catalyst.  more » « less
Award ID(s):
2155003
PAR ID:
10468094
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
29
Issue:
58
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A metal/ligand cooperative approach to the reduction of small molecules by metal silylene complexes (R2Si=M) is demonstrated, whereby silicon activates the incoming substrate and mediates net two‐electron transformations by one‐electron redox processes at two metal centers. An appropriately tuned cationic pincer cobalt(I) complex, featuring a central silylene donor, reacts with CO2to afford a bimetallic siloxane, featuring two CoIIcenters, with liberation of CO; reaction of the silylene complex with ethylene yields a similar bimetallic product with an ethylene bridge. Experimental and computational studies suggest a plausible mechanism proceeding by [2+2] cycloaddition to the silylene complex, which is quite sensitive to the steric environment. The CoII/CoIIproducts are reactive to oxidation and reduction. Taken together, these findings demonstrate a strategy for metal/ligand cooperative small‐molecule activation that is well‐suited to 3dmetals. 
    more » « less
  2. Abstract A cobalt silylene (Co=Si) linkage enables a distinct metal/ligand cooperative activation of an organic azide, where nitrene transfer occurs to and from the Co⋅⋅⋅Si linkage without ligand dissociation from the 18‐electron cobalt center. This process utilizes the orthogonal binding affinities of the silicon and cobalt sites to avoid CO poisoning that would otherwise inhibit reactivity, leading to significantly improved catalytic isocyanate generation compared with related systems. The dual‐site approach demonstrates the potential of metal/main‐group bonds to access new and efficient catalytic pathways. 
    more » « less
  3. Abstract Reduction of the cobalt(II) chloride complex, Ph2B(tBuIm)2Co(THF)Cl (1) in the presence oftBuN≡C affords the diamagnetic, square planar cobalt(I) complex Ph2B(tBuIm)2Co(C≡NtBu)2(2). This is a rare example of a 16‐electron cobalt(I) complex that is structurally related to square planar noble metal complexes. Accordingly, the electronic structure of2, as calculated by DFT, reveals that the HOMO is largely dz2in character. Complex2is readily oxidized to its cobalt(II) congener [Ph2B(tBuIm)2Co(C=NtBu)2]BPh4(3‐BPh4), whose EPR spectral parameters are characteristic of low‐spin d7with an unpaired electron in an orbital of dz2parentage. This is also consistent with the results of DFT calculations. Despite its 16‐electron configuration and the dz2parentage of the HOMO, the only tractable reactions of2involve one electron oxidation to afford3. 
    more » « less
  4. Warren Piers (Ed.)
    Although cobalt( i ) bis-phosphine complexes have been implicated in many selective C–C bond-forming reactions, until recently relatively few of these compounds have been fully characterized or have been shown to be intermediates in catalytic reactions. In this paper we present a new practical method for the synthesis and isolation of several cobalt( i )-bis-phosphine complexes and their use in Co( i )-catalyzed reactions. We find that easily prepared ( in situ generated or isolated) bis-phosphine and (2,6- N -aryliminoethyl)pyridine (PDI) cobalt( ii ) halide complexes are readily reduced by 1,4-bis-trimethylsilyl-1,4-dihydropyrazine or commercially available lithium nitride (Li 3 N), leaving behind only innocuous volatile byproducts. Depending on the structures of the bis-phosphines, the cobalt( i ) complex crystallizes as a phosphine-bridged species [(P∼P)(X)Co I [μ-(P∼P)]Co I (X)(P∼P)] or a halide-bridged species [(P∼P)Co I [μ-(X)] 2 Co I (P∼P)]. Because the side-products are innocuous, these methods can be used for the in situ generation of catalytically competent Co( i ) complexes for a variety of low-valent cobalt-catalyzed reactions of even sensitive substrates. These complexes are also useful for the synthesis of rare cationic [(P∼P)Co I -η 4 -diene] + X − or [(P∼P)Co I -η 6 -arene] + X − complexes, which are shown to be excellent single-component catalysts for the following regioselective reactions of dienes: heterodimerizations with ethylene or methyl acrylate, hydroacylation and hydroboration. The reactivity of the single-component catalysts with the in situ generated species are also documented. 
    more » « less
  5. Abstract Electrochemical reduction of carbon dioxide (CO2RR) to value‐added products is a promising strategy to alleviate the greenhouse gas effect. Molecular catalysts, such as cobalt (II) phthalocyanine (CoPc), are known to be efficient electrocatalysts that are capable of converting CO2into carbon monoxide (CO). Herein, we report an axial modification strategy to enhance CoPc's CO2RR performance. After coordinating with axial ligands, the electron density of Co was depleted via π‐backbonding. This π‐backbonding weakened the Co‐CO bond, resulting in rapid desorption of CO. Also, the presence axial ligands elevated the Co dz2orbital energy, resulting in a significantly enhanced CO selectivity, evidenced by an increased faradaic efficiency (FE) from 82 % (CoPc) to 91 % and 94 % with the presence of pyridine (CoPc‐py) and imidizal ligands (CoPc‐im), respectively, at −0.82 V vs. RHE. Density functional theory calculations reveal that axial ligation of CoPc can reduce the energy barrier for CO2activation and facilitate the formation of*COOH. 
    more » « less