Abstract Purkinje cell (PC) loss occurs at an early age in patients and animal models of Niemann-Pick Type C (NPC), a lysosomal storage disease caused by mutations in theNpc1orNpc2genes. Although degeneration of PCs occurs early in NPC, little is known about how NPC1 deficiency affects the postnatal development of PCs. Using theNpc1nmf164mouse model, we found that NPC1 deficiency significantly affected the postnatal development of PC dendrites and synapses. The developing dendrites of Npc1nmf164PCs were significantly deficient in mitochondria and lysosomes. Furthermore, anabolic (mTORC1) and catabolic (TFEB) signaling pathways were not only perturbed but simultaneously activated in NPC1-deficient PCs, suggesting a loss of metabolic balance. We also found that mice with conditional heterozygous deletion of the Phosphatase and Tensin Homolog Deleted on Chromosome 10 gene (Pten-cHet), an inhibitor of mTORC1, showed similar early dendritic alterations in PCs to those found inNpc1-deficient mice. However, in contrast toNpc1nmf164mice,Pten-cHet mice exhibited the overactivation of the mTORC1 pathway but with a strong inhibition of TFEB signaling, along with no dendritic mitochondrial reductions by the end of their postnatal development. Our data suggest that disruption of the lysosomal-metabolic signaling in PCs causes dendritic and synaptic developmental deficits that precede and promote their early degeneration in NPC.
more »
« less
Infection and inflammation stimulate expansion of a CD74 + Paneth cell subset to regulate disease progression
Abstract Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC‐reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection‐stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC‐specific mucosal pentraxin (Mptx2) in activated PCs. A PC‐specific ablation ofMyD88reduced CD74+PC population, thus ameliorating pathogen‐induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.
more »
« less
- PAR ID:
- 10468131
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- The EMBO Journal
- Volume:
- 42
- Issue:
- 21
- ISSN:
- 0261-4189
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A number of studies have examined the effects of 1,25‐dihydroxyvitamin D3(1,25(OH)2D3) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC‐specificRab11aa recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL‐6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell‐originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH)2D3or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC‐specificRab11aknockout mice (Rab11aΔIEC). 1,25(OH)2D3administered at 25 ng, two doses per mouse, by intraperitoneal injection, reduced inflammatory cytokine production in knockout mice compared to vehicle‐injected mice. Remarkably, feeding mice with dietary vitamin D supplementation at 20,000 IU/kg spanning fetal and postnatal developmental stages led to improved bodyweights, reduced immune cell infiltration, and decreased inflammatory cytokines. We found that these vitamin D effects were accompanied by decreased NF‐κB (p65) in the knockout intestinal epithelia, reduced tissue‐resident macrophages, and partial restoration of epithelial morphology. Our study suggests that dietary vitamin D supplementation may prevent and limit intestinal inflammation in hosts with high susceptibility to chronic inflammation.more » « less
-
Abstract Neural stem/progenitor cell (NS/PC)‐based therapies have shown exciting potential for regeneration of the central nervous system (CNS) and NS/PC cultures represent an important resource for disease modeling and drug screening. However, significant challenges limiting clinical translation remain, such as generating large numbers of cells required for model cultures or transplantation, maintaining physiologically representative phenotypesex vivoand directing NS/PC differentiation into specific fates. Here, we report that culture of human NS/PCs in 3D, hyaluronic acid (HA)‐rich biomaterial microenvironments increased differentiation toward oligodendrocytes and neurons over 2D cultures on laminin‐coated glass. Moreover, NS/PCs in 3D culture exhibited a significant reduction in differentiation into reactive astrocytes. Many NS/PC‐derived neurons in 3D, HA‐based hydrogels expressed synaptophysin, indicating synapse formation, and displayed electrophysiological characteristics of immature neurons. While inclusion of integrin‐binding, RGD peptides into hydrogels resulted in a modest increase in numbers of viable NS/PCs, no combination of laminin‐derived, adhesive peptides affected differentiation outcomes. Notably, 3D cultures of differentiating NS/PCs were maintained for at least 70 days in medium with minimal growth factor supplementation. In sum, results demonstrate the use of 3D, HA‐based biomaterials for long‐term expansion and differentiation of NS/PCs toward oligodendroglial and neuronal fates, while inhibiting astroglial fates. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 704–718, 2019.more » « less
-
Abstract MOV10 is an RNA helicase that associates with the RNA‐induced silencing complex component Argonaute (AGO), likely resolving RNA secondary structures. MOV10 also binds the Fragile X mental retardation protein to block AGO2 binding at some sites and associates with UPF1, a principal component of the nonsense‐mediated RNA decay pathway. MOV10 is widely expressed and has a key role in the cellular response to viral infection and in suppressing retrotransposition. Posttranslational modifications of MOV10 include ubiquitination, which leads to stimulation‐dependent degradation, and phosphorylation, which has an unknown function. MOV10 localizes to the nucleus and/or cytoplasm in a cell type‐specific and developmental stage‐specific manner. Knockout ofMov10leads to embryonic lethality, underscoring an important role in development where it is required for the completion of gastrulation. MOV10 is expressed throughout the organism; however, most studies have focused on germline cells and neurons. In the testes, the knockdown ofMov10disrupts proliferation of spermatogonial progenitor cells. In brain, MOV10 is significantly elevated postnatally and binds mRNAs encoding cytoskeleton and neuron projection proteins, suggesting an important role in neuronal architecture. HeterozygousMov10mutant mice are hyperactive and anxious and their cultured hippocampal neurons have reduced dendritic arborization. Zygotic knockdown ofMov10inXenopus laeviscauses abnormal head and eye development and mislocalization of neuronal precursors in the brain. Thus, MOV10 plays a vital role during development, defense against viral infection and in neuronal development and function: its many roles and regulation are only beginning to be unraveled. This article is categorized under:RNA Interactions with Proteins and Other Molecules > RNA‐Protein ComplexesRNA Interactions with Proteins and Other Molecules > Protein‐RNA Interactions: Functional Implicationsmore » « less
-
Summary Cu+‐chaperones are a diverse group of proteins that allocate Cu+ions to specific copper proteins, creating different copper pools targeted to specific physiological processes.Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required.MtNCC1 is a nodule‐specific Cu+‐chaperone encoded in theMedicago truncatulagenome, with a N‐terminus Atx1‐like domain that can bind Cu+with picomolar affinities. MtNCC1 is able to interact with nodule‐specific Cu+‐importer MtCOPT1.MtNCC1is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation,ncc1mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper‐dependent cytochromecoxidase activity.A subset of the copper proteome is also affected in thencc1mutant nodules. Many of these proteins can be pulled down when using a Cu+‐loaded N‐terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper‐dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.more » « less