We introduce a lattice dynamics package which calculates elastic, thermodynamic and thermal transport properties of crystalline materials from data on their force and potential energy as a function of atomic positions. The data can come from density functional theory (DFT) calculations or classical molecular dynamics runs performed in a supercell. First, the model potential parameters, which are anharmonic force constants are extracted from the latter runs. Then, once the anharmonic model is defined, thermal conductivity and equilibrium properties at finite temperatures can be computed using lattice dynamics, Boltzmann transport theories, and a variational principle respectively. In addition, the software calculates the mechanical properties such as elastic tensor, Gruneisen parameters and the thermal expansion coefficient within the quasi-harmonic approximation (QHA). Phonons, elastic constants and thermodynamic properties results applied to the germanium crystal will be illustrated. Using the force constants as a force field, one may also perform molecular dynamics (MD) simulations in order to investigate the combined effects of anharmonicity and defect scattering beyond perturbation theory.
more »
« less
A Physical Model of Nanotwin Unit and Orientation Organization for Designing Mechanical Performance: Cases of InSb, GaAs, ZnS
Abstract Functional unit and organization (FUO) paradigm starts with functional units and assembles these functional units into specific organizations to optimize material performance. An advantage of FUO paradigm is interpretation of physical essence of traditional structure–performance relationships. Experimental achievements based on FUO paradigm abound in recent years, demanding theoretical explanations for further quantitative material design. Following FUO paradigm, here a three‐step model (bond‐region‐structure) of nanotwin (NT) unit and orientation organization to optimize mechanical performance is established. First, anisotropic elasticities of representative bonds and assembled regional elastic constants are evaluated. Second, yield conditions of different regions, which are summarized as critical resolved shear stress (CRSS) criteria of NT structure, are quantified. Third, anisotropic yield strengths of NT structure from the regional elastic constants and CRSS criteria are derived. This FUO‐based model is implemented into InSb, GaAs, and ZnS, predicted elastic constants and yield strengths are validated with molecular dynamics (MD) simulations. The method is more efficient than MD with comparable accuracy, and is also flexible to combine with density function theory and experiment. This demonstration sets foundation of NT unit and orientation organization design for achieving optimum mechanical performance.
more »
« less
- Award ID(s):
- 2311117
- PAR ID:
- 10468133
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 3
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A novel computational strategy is presented to calculate from first principles the coefficient of thermal expansion and the elastic constants of a material over meaningful intervals of temperature and pressure. This strategy combines a novel implementation of the quasiharmonic approximation to calculate the isothermal-isochoric linear and nonlinear elastic constants of a material, with elementary equations of nonlinear continuum mechanics. Our implementation of the quasiharmonic approximation relies on finite deformations, the use of nonprimitive supercells to describe a material, a recently proposed technique to calculate generalized mode Grüneisen parameters, and the numerical differentiation of the stress tensor to calculate both second- and third-order elastic constants. The combination of this method with nonlinear continuum mechanics is shown to yield accurate predictions of lattice parameters and linear elastic constants of a material over finite intervals of temperature and pressure, at the cost of calculating isothermal second- and third-order elastic constants for a single reference state. Here, the validity and limits of our novel methods are assessed by carrying out calculations of MgO based on classical interatomic potentials. To demonstrate potential, our methods are then used in conjunction with a density functional theory approach to calculate thermal expansion and elastic properties of silicon, lithium hydrate, and graphite.more » « less
-
Sinnott, Susan (Ed.)Single crystalline sapphire (-) possesses superior mechanical, thermal, chemical, and optical properties over a wide range of temperatures and pressure conditions, allowing it for a broad spectrum of industrial applications. For the past few decades, research has aimed at comprehensive understanding of its plastic deformation mechanisms under mechanical loading. In this study, we have employed molecular dynamics (MD) simulations to study rhombohedral twinning of sapphire, which is of critical importance in understanding the plastic deformation of sapphire as one of most commonly observed deformation modes. Since the critical resolved shear stress (CRSS) plays a pivotal role in describing the activation of slip systems, it is adopted in this study as the key parameter for analysis. The CRSS is calculated during the uniaxial compression test of a cubic sapphire crystal, oriented to exclusively activate rhombohedral twinning deformation, under simulation conditions such as temperature, strain rate, and system size. Furthermore, a theoretical model of CRSS is constructed based on theories of thermal activation processes, then empirically fitted to CRSS data gathered from the MD simulations. This model accurately captures the relationships between CRSS and external parameters including temperature, strain rate, and system size and shows excellent agreements with the simulation results.more » « less
-
Refractory complex concentrated alloys (RCCAs) have drawn increasing attention recently owing to their balanced mechanical properties, including excellent creep resistance, ductility, and oxidation resistance. The mechanical and thermal properties of RCCAs are directly linked with the elastic constants. However, it is time consuming and expensive to obtain the elastic constants of RCCAs with conventional trial-and-error experiments. The elastic constants of RCCAs are predicted using a combination of density functional theory simulation data and machine learning (ML) algorithms in this study. The elastic constants of several RCCAs are predicted using the random forest regressor, gradient boosting regressor (GBR), and XGBoost regression models. Based on performance metrics R-squared, mean average error and root mean square error, the GBR model was found to be most promising in predicting the elastic constant of RCCAs among the three ML models. Additionally, GBR model accuracy was verified using the other four RHEAs dataset which was never seen by the GBR model, and reasonable agreements between ML prediction and available results were found. The present findings show that the GBR model can be used to predict the elastic constant of new RHEAs more accurately without performing any expensive computational and experimental work.more » « less
-
Understanding the mechanical properties of three-dimensional (3D)-printed ceramics while keeping the parts intact is crucial for advancing their application in high-performance and biocompatible fields, such as biomedical and aerospace engineering. This study uses non-destructive nanoindentation techniques to investigate the mechanical performance of 3D-printed zirconia across pre-conditioned and sintered states. Vat photopolymerization-based additive manufacturing (AM) was employed to fabricate zirconia samples. The structural and mechanical properties of the printed zirconia samples were explored, focusing on hardness and elastic modulus variations influenced by printing orientation and post-processing conditions. Nanoindentation data, analyzed using the Oliver and Pharr method, provided insights into the elastic and plastic responses of the material, showing the highest hardness and elastic modulus in the 0° print orientation. The microstructural analysis, conducted via scanning electron microscopy (SEM), illustrated notable changes in grain size and porosity, emphasizing the influencing of the printing orientation and thermal treatment on material properties. This research uniquely investigates zirconia’s mechanical evolution at the nanoscale across different processing stages—pre-conditioned and sintered—using nanoindentation. Unlike prior studies, which have focused on bulk mechanical properties post-sintering, this work elucidates how nano-mechanical behavior develops throughout additive manufacturing, bridging critical knowledge gaps in material performance optimization.more » « less
An official website of the United States government
