skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering Challenges for AI-Supported Computer Vision in Small Uncrewed Aerial Systems
Computer Vision (CV) is used in a broad range of Cyber-Physical Systems such as surgical and factory floor robots and autonomous vehicles including small Unmanned Aerial Systems (sUAS). It enables machines to perceive the world by detecting and classifying objects of interest, reconstructing 3D scenes, estimating motion, and maneuvering around objects. CV algorithms are developed using diverse machine learning and deep learning frameworks, which are often deployed on limited resource edge devices. As sUAS rely upon an accurate and timely perception of their environment to perform critical tasks, problems related to CV can create hazardous conditions leading to crashes or mission failure. In this paper, we perform a systematic literature review (SLR) of CV-related challenges associated with CV, hardware, and software engineering. We then group the reported challenges into five categories and fourteen sub-challenges and present existing solutions. As current literature focuses primarily on CV and hardware challenges, we close by discussing implications for Software Engineering, drawing examples from a CV-enhanced multi-sUAS system.  more » « less
Award ID(s):
1931962
PAR ID:
10468154
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-0113-7
Page Range / eLocation ID:
158 to 170
Subject(s) / Keyword(s):
Small Uncrewed Aerial Systems, Computer Vision, Artificial Intelligence
Format(s):
Medium: X
Location:
Melbourne, Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. Missing person searches are typically initiated with a description of a person that includes their age, race, clothing, and gender, possibly supported by a photo. Unmanned Aerial Systems (sUAS) imbued with Computer Vision (CV) capabilities, can be deployed to quickly search an area to find the missing person; however, the search task is far more difficult when a crowd of people is present, and only the person described in the missing person report must be identified. It is particularly challenging to perform this task on the potentially limited resources of an sUAS. We therefore propose AirSight, as a new model that hierarchically combines multiple CV models, exploits both onboard and off-board computing capabilities, and engages humans interactively in the search. For illustrative purposes, we use AirSight to show how a person's image, extracted from an aerial video can be matched to a basic description of the person. Finally, as a work-in-progress paper, we describe ongoing efforts in building an aerial dataset of partially occluded people and physically deploying AirSight on our sUAS. 
    more » « less
  2. In emergency response scenarios, autonomous small Unmanned Aerial Systems (sUAS) must be configured and deployed quickly and safely to perform mission-specific tasks. In this paper, we present \DR, a Software Product Line for rapidly configuring and deploying a multi-role, multi-sUAS mission whilst guaranteeing a set of safety properties related to the sequencing of tasks within the mission. Individual sUAS behavior is governed by an onboard state machine, combined with coordination handlers which are configured dynamically within seconds of launch and ultimately determine the sUAS' behaviors, transition decisions, and interactions with other sUAS, as well as human operators. The just-in-time manner in which missions are configured precludes robust upfront testing of all conceivable combinations of features -- both within individual sUAS and across cohorts of collaborating ones. To ensure the absence of common types of configuration failures and to promote safe deployments, we check vital properties of the dynamically generated sUAS specifications and coordination handlers before sUAS are assigned their missions. We evaluate our approach in two ways. First, we perform validation tests to show that the end-to-end configuration process results in correctly executed missions, and second, we apply fault-based mutation testing to show that our safety checks successfully detect incorrect task sequences. 
    more » « less
  3. Research in the area of Cyber-Physical Systems (CPS) is hampered by the lack of available project environments in which to explore open challenges and to propose and rigorously evaluate solutions. In this “New Ideas and Emerging Results” paper we introduce a CPS research incubator – based upon a system, and its associated project environment, for managing and coordinating the flight of small Unmanned Aerial Systems (sUAS). The research incubator provides a new community resource, making available diverse, high-quality project artifacts produced across multiple releases of a safety-critical CPS. It enables researchers to experiment with their own novel solutions within a fully-executable runtime environ- ment that supports both high-fidelity sUAS simulations as well as physical sUAS. Early collaborators from the software engineering community have shown broad and enthusiastic support for the project and its role as a research incubator, and have indicated their intention to leverage the environment to address their own research areas of goal modeling, runtime adaptation, safety-assurance, and software evolution. 
    more » « less
  4. Computing systems are consuming an increasing and unsustainable fraction of society’s energy footprint, notably in data centers. Meanwhile, energy-efficient software engineering techniques are often absent from undergraduate curricula. We propose to develop a learning module for energy-efficient software, suitable for incorporation into an undergraduate software engineering class. There is one major problem with such an endeavor: undergraduate curricula have limited space for mastering energy-related systems programming aspects. To address this problem, we propose to leverage the domain expertise afforded by large language models (LLMs). In our preliminary studies, we observe that LLMs can generate energy-efficient variations of basic linear algebra codes tailored to both ARM64 and AMD64 architectures, as well as unit tests and energy measurement harnesses. On toy examples suitable for classroom use, this approach reduces energy expenditure by 30–90%. These initial experiences give rise to our vision of LLM-based metacompilers as a tool for students to transform high-level algorithms into efficient, hardware-specific implementations. Complementing this tooling, we will incorporate systems thinking concepts into the learning module so that students can reason both locally and globally about the effects of energy optimizations. 
    more » « less
  5. null (Ed.)
    Artificial intelligence enabled by neural networks has enabled applications in many fields (e.g. medicine, finance, autonomous vehicles). Software implementations of neural networks on conventional computers are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimic neurons and synapses in brain for distributed and parallel processing. Neuromorphic engineering enabled by silicon photonics can offer subnanosecond latencies, and can extend the domain of artificial intelligence applications to high-performance computing and ultrafast learning. We discuss current progress and challenges on these demonstrations to scale to practical systems for training and inference. 
    more » « less