Abstract Disentangling the influences of climate change from other stressors affecting the population dynamics of aquatic species is particularly pressing for northern latitude ecosystems, where climate‐driven warming is occurring faster than the global average. Chinook salmon (Oncorhynchus tshawytscha) in the Yukon‐Kuskokwim (YK) region occupy the northern extent of their species' range and are experiencing prolonged declines in abundance resulting in fisheries closures and impacts to the well‐being of Indigenous people and local communities. These declines have been associated with physical (e.g., temperature, streamflow) and biological (e.g., body size, competition) conditions, but uncertainty remains about the relative influence of these drivers on productivity across populations and how salmon–environment relationships vary across watersheds. To fill these knowledge gaps, we estimated the effects of marine and freshwater environmental indicators, body size, and indices of competition, on the productivity (adult returns‐per‐spawner) of 26 Chinook salmon populations in the YK region using a Bayesian hierarchical stock‐recruitment model. Across most populations, productivity declined with smaller spawner body size and sea surface temperatures that were colder in the winter and warmer in the summer during the first year at sea. Decreased productivity was also associated with above average fall maximum daily streamflow, increased sea ice cover prior to juvenile outmigration, and abundance of marine competitors, but the strength of these effects varied among populations. Maximum daily stream temperature during spawning migration had a nonlinear relationship with productivity, with reduced productivity in years when temperatures exceeded thresholds in main stem rivers. These results demonstrate for the first time that well‐documented declines in body size of YK Chinook salmon were associated with declining population productivity, while taking climate into account.
more »
« less
Interactions between life history and the environment on changing growth rates of Chinook salmon
Fish in all the world's oceans exhibit variable body size and growth over time, with some populations exhibiting long-term declines in size. These patterns can be caused by a range of biotic, abiotic, and anthropogenic factors and impact the productivity of harvested populations. Within a given species, individuals often exhibit a range of life history strategies that may cause some groups to be buffered against change. One of the most studied declines in size-at-age has been in populations of salmon; Chinook salmon in the Northeast Pacific Ocean are the largest-bodied salmon species and have experienced long-term declines in size. Using long-term monitoring data, we develop novel size and growth models to link observed changes in Chinook size to life history traits and environmental variability. Our results identify three distinct trends in size across the 48 stocks in our study. Differences among populations are correlated with ocean distribution, migration timing, and freshwater residence. We provide evidence that trends are driven by interannual variation in certain oceanographic processes and competition with pink salmon.
more »
« less
- Award ID(s):
- 1734999
- PAR ID:
- 10468186
- Publisher / Repository:
- Canadian Journal of Fisheries and Aquatic Sciences
- Date Published:
- Journal Name:
- Canadian Journal of Fisheries and Aquatic Sciences
- Volume:
- 80
- Issue:
- 4
- ISSN:
- 0706-652X
- Page Range / eLocation ID:
- 648 to 662
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding how species are responding to environmental change is a central challenge for stewards and managers of fish and wildlife who seek to maintain harvest opportunities for communities and Indigenous peoples. This is a particularly daunting but increasingly important task in remote, high‐latitude regions where environmental conditions are changing rapidly and data collection is logistically difficult. The Arctic–Yukon–Kuskokwim (AYK) region encompasses the northern extent of the Chinook Salmon Oncorhynchus tshawytscha range where populations are experiencing rapid rates of environmental change across both freshwater and marine habitats due to global climate change. Climate–salmon interactions in the AYK region are a particularly pressing issue as many local communities have a deep reliance on a subsistence way of life. Here, we synthesize perspectives shared at a recent workshop on Chinook Salmon declines in the AYK region. The objectives were to discuss current understandings of climate–Chinook Salmon interactions, develop a set of outstanding questions, review available data and its limitations in addressing these questions, and describe the perspectives expressed by participants in this workshop from diverse backgrounds. We conclude by suggesting pathways forward to integrate different types of information and build relationships among communities, academic partners, and fishery management agencies.more » « less
-
Arctic and subarctic rivers are warming rapidly, with unknown consequences for migratory fishes and the human communities dependent on them. To date, few studies have provided a comprehensive assessment of possible climate change impacts on the hydrology and temperature of Arctic rivers at the regional scale, and even fewer have connected those changes to multiple fish species with input and guidance from Indigenous communities. We used climate, hydrologic, and fish-growth simulations of historical (1990–2021) and future (2034–2065) young-of-year (YOY) growth potential of Chinook salmon (Oncorhynchus tshawytscha) and Dolly Varden (Salvelinus malma) for seven river basins in the Arctic-Yukon-Kuskokwim (AYK) region of Alaska, USA and Yukon Territory, Canada. Historically, summer water temperatures of all river basins remained below thresholds regarded as deleterious for Chinook salmon (14.6 °C) and Dolly Varden (16 °C), even in the warmest years. However, by the mid-century, Chinook salmon growth was limited, with declines in the warmest years in most river basins. Conversely, Dolly Varden are expected to benefit, with a near-doubling in growth projections in all river basins. This suggests that there may be an increase in suitable habitat for Dolly Varden by mid-century. The results highlight species-specific consequences of climate change and can guide future research on refugia for these species of cultural and subsistence importance to Indigenous communities in the AYK region and throughout the Arctic.more » « less
-
Abstract Snake River Sockeye Salmon Oncorhynchus nerka, listed as an endangered species in 1991, currently inhabit three nursery lakes (Redfish, Pettit, and Alturas lakes) in the Sawtooth Valley, Idaho. Conspecific kokanee (lacustrine Sockeye Salmon) are also present in the lakes. Snake River Sockeye Salmon recovery efforts, initially focused on genetic conservation, are now attempting to rebuild naturally spawning populations using hatchery supplementation. However, in Sockeye Salmon nursery lakes, density dependence is frequently observed when elevated O. nerka abundance leads to declines in zooplankton biomass, body size, and shifts in community composition. In turn, these changes lead to reductions in juvenile O. nerka growth rates, survival, and adult returns. We examined a long-term data set of O. nerka population metrics and associated zooplankton community metrics. We found evidence of density dependence within and among nursery lakes. We detected differences in zooplankton biomass, lengths of preferred zooplankton prey (Daphnia spp. and cyclopoid copepods), parr growth rates, and age-1 smolt size among the three lakes. We found negative relationships between O. nerka density and zooplankton biomass and size. We identified positive relationships between zooplankton biomass and two response variables: smolt size at migration and growth rates of hatchery parr. The relationships were generally similar among lakes. Variable outcomes were a result of differences in O. nerka density (or zooplankton biomass), controlled primarily by the relative proportion of spawning and rearing habitat in each lake. Understanding unique lake habitats, ecological interactions, and the role of density dependence is germane to management of Snake River Sockeye Salmon populations.more » « less
-
Abstract Increases in the frequency and intensity of acute and chronic disturbances are causing declines of coral reefs world‐wide. Although quantifying the responses of corals to acute disturbances is well documented, detecting subtle responses of coral populations to chronic disturbances is less common, but can also result in altered population and community structures.We investigated the population dynamics of two key reef‐building Merulinid coral species,Dipsastraea favusandPlatygyra lamellina, with similar life‐history traits, in the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018, to assess potential differences in their population trajectories.Demographic processes, which included rates of survival, growth, reproduction and recruitment were used to parametrize integral projection models and estimate population growth rates and the likely population trajectories of both coral species.The survival and reproduction rates of bothD. favusandP. lamellinawere positively related to coral colony size, and elasticity analyses showed that large colonies most influenced population dynamics. Although both species have similar life‐history traits and growth morphologies and are generally regarded as ‘stress‐tolerant’, the populations showed contrasting trajectories—D. favusappears to be increasing whereasP. lamellinaappears to be decreasing.As many corals have long‐life expectancies, the process of local and regional decline might be subtle and slow. Ecological assessments based on total living coral coverage, morphological groups or functional traits might overlook subtle, species‐specific trends. However, demographic approaches capable of detecting subtle species‐specific population changes can augment ecological studies and provide valuable early warning signs of decline before major coral loss becomes evident.more » « less
An official website of the United States government

