skip to main content


This content will become publicly available on October 10, 2024

Title: Lab-on-a-chip optical biosensor platform: a micro-ring resonator integrated with a near-infrared Fourier transform spectrometer

In this paper, we demonstrated the design and experimental results of the near-infrared lab-on-a-chip optical biosensor platform that monolithically integrates the MRR and the on-chip spectrometer on the silicon-on-insulator (SOI) wafer, which can eliminate the external optical spectrum analyzer for scanning the wavelength spectrum. The symmetric add-drop MRR biosensor is designed to have a free spectral range (FSR) of ∼19 nm and a bulk sensitivity of ∼73 nm/RIU; then the drop-port output resonance peaks are reconstructed from the integrated spatial-heterodyne Fourier transform spectrometer (SHFTS) with the spectral resolution of ∼3.1 nm and the bandwidth of ∼50 nm, which results in the limit of detection of 0.042 RIU.

 
more » « less
Award ID(s):
1932753
NSF-PAR ID:
10468408
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
48
Issue:
20
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 5371
Size(s):
Article No. 5371
Sponsoring Org:
National Science Foundation
More Like this
  1. Jiang, Wei ; Alan Wang (Ed.)
    We demonstrated the monolithically integrated biosensor with micro-ring-resonator (MRR) and spatial-heterodyne Fourier-transform-spectrometer (SH-FTS) on Si3N4-on-SiO2, substituting the external optical spectrum analyzer. The spectrum is retrieved from SH-FTS with the bulk sensitivity of 42.9 nm/RIU. 
    more » « less
  2. We demonstrated the design and experimental results of the near-infrared lab-on-a-chip optical biosensor platform that monolithically integrates the micro-ring-resonator and the on-chip spectrometer on the SOI wafer with the limit of detection of 0.042 RIU.

     
    more » « less
  3. The optical resonances of the silicon nanopost array patterned on a silicon-on-insulator (SOI) substrate have been investigated. The fabricated device supports optical resonances in the range of 1.55 μm with a variable Q factor depending on the angle of incidence. By sealing the device on top of the nanoposts, we demonstrated a lateral flow-through label-free biosensor built on SOI. The biosensor exhibits the refractive index sensitivity of 800 nm/RIU and the femtomolar sensitivity for detection of a breast cancer biomarker (ErbB2). 
    more » « less
  4. This theoretical modeling and simulation paper presents designs and projected performance of an on-chip digital Fourier transform spectrometer using a thermo-optical (TO) Michelson grating interferometer operating at∼1550 and 2000 nm for silicon-on-insulator and for germanium-on-silicon technological platforms, respectively. The Michelson interferometer arms consist of two unbalanced tunable optical delay lines operating in the reflection mode. They are comprised of a cascade connection of waveguide Bragg grating resonators (WBGRs) separated by a piece of straight waveguide with lengths designed according to the spectrometer resolution requirements. The length of eachWBGRis chosen according to the Butterworth filter technique to provide one resonant spectral profile with a bandwidth twice that of the spectrometer bandwidth. A selectable optical path difference (OPD) between the arms is obtained by shifting the notch in the reflectivity spectrum along the wavelength axis by means of a low-power TO heater stripe atop the WBGR, inducing an OPD that depends on the line position of the WBGR affected by TO switching.We examined the device performances in terms of signal recostruction in the radio-frequency (RF) spectrum analysis application at 1 GHz and at 1.5 GHz of spectrometer resolution. The investigation demonstrated that high-quality spectrum reconstruction is obtained for both Lorentzian and arbitrary input signals with a bandwidth up to 40 GHz. We also show that spectrum reconstruction of 100–200 GHz RF band input signals is feasible in the Ge-on-Si chips. 
    more » « less
  5. We introduce and experimentally demonstrate a miniaturized integrated spectrometer operating over a broad bandwidth in the short-wavelength infrared (SWIR) spectrum that combines an add-drop ring resonator narrow band filter with a distributed Bragg reflector (DBR) based broadband filter realized in a silicon photonic platform. The contra-directional coupling DBR filter in this design consists of a pair of waveguide sidewall gratings that act as a broadband filter (i.e., 3.9 nm). The re-directed beam is then fed into the ring resonator which functions as a narrowband filter (i.e., 0.121 nm). In this scheme the free spectral range (FSR) limitation of the ring resonator is overcome by using the DBR as a filter to isolate a single ring resonance line. The overall design of the spectrometer is further simplified by simultaneously tuning both components through the thermo-optic effect. Moreover, several ring-grating spectrometer cells with different central wavelengths can be stacked in cascade in order to cover a broader spectrum bandwidth. This can be done by centering each unit cell on a different center wavelength such that the maximum range of one-unit cell corresponds to the minimum range of the next unit cell. This configuration enables high spectral resolution over a large spectral bandwidth and high extinction ratio (ER), making it suitable for a wide variety of applications.

     
    more » « less