skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 13, 2026

Title: Defining hybridization thresholds for native species conservation in the genomic era
ABSTRACT Human-induced hybridization among genetically distinct groups of fish is a widespread and complex problem in fisheries management. A particularly challenging facet of human-induced hybridization is deciding which fish should be prioritized for conservation action or investment, and which should not. The increasing availability of genomic data in fisheries management demands that explicit hybridization frameworks and associated hybridization thresholds be developed, as increasing resolution will inevitably demonstrate that small amounts of nonnative ancestry are present in populations or species that were previously thought to be nonhybridized. A key question then becomes, how do we make rational decisions regarding resource prioritization for populations or species with, for example, 10, 1, 0.1 or even 0.01% nonnative ancestry? We use extensive data from Westslope Cutthroat Trout Onchorhynchus lewisi to describe how objective, data-based decision frameworks can be developed to help managers conserve genetic variation, while minimizing nonnative ancestry and the risk of outbreeding depression. While the conservation implications of hybridization are nuanced and context-dependent, the approach described herein is general and can be extended to other species.  more » « less
Award ID(s):
1652278
PAR ID:
10613583
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Fisheries
Date Published:
Journal Name:
Fisheries
ISSN:
0363-2415
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advances in genetics and genomics have raised new questions in trout restoration and management, specifically about species identity and purity, which fish to value, and where these fish belong. This paper examines how this molecular turn in fisheries management is influencing wild and native trout policy in Colorado. Examples from two small Colorado watersheds, Bear Creek and Sand Creek, illustrate how framing trout as genetic bodies can guide managers to care for or kill trout populations in the interest of rectifying decades of genetic disruption caused by human activity. While trout management has typically relied on human intervention, the turn to genetic science is prompting new classifications of lineage and taxa, altering long-standing conservation priorities, and reorienting the manipulation of biological processes such as reproduction and dispersal. As a result, other social and ecological factors may be pushed to the margins of management decisions. These changes warrant greater conversation about the consequences of molecular analyses and the values embedded in trout science and conservation more broadly. 
    more » « less
  2. Abstract Effective management of wild animals requires understanding how predation and harvest alter the composition of populations. These top‐down processes can alter consumer body size and behavior and thus should also have consequences for bottom‐up processes because (1) body size is a critical determinant of the amount of nutrients excreted and (2) variation in foraging behavior, which is strongly influenced by predation, can determine the amount and spatial distribution of nutrients. Changes to either are known to affect ecosystem‐scale nutrient dynamics, but the consequences of these dynamics on ecosystem processes are poorly understood. We used an individual‐based model of an artificial reef (AR) and reef fish in a subtropical seagrass bed to test how fish body size can interact with variation in foraging behavior at the population and individual levels to affect seagrass production in a nutrient‐limited system. Seagrass production dynamics can be driven by both belowground (BGPP) and aboveground primary production (AGPP); thus, we quantified ecosystem‐scale production via these different mechanistic pathways. We found that (1) populations of small fish generated greater total primary production (TLPP = BGPP + AGPP) than large fish, (2) fish that foraged more increased TLPP more than those that spent time sheltering on ARs, and (3) small fish that foraged more led to greatest increases in TLPP. The mechanism by which this occurred was primarily through increased BGPP, highlighting the importance of cryptic belowground dynamics in seagrass ecosystems. Populations of extremely bold individuals (i.e., foraged significantly more) slightly increased TLPP but strongly affected the distribution of production, whereby bold individuals increased BGPP, while populations of shy individuals increased AGPP. Taken together, these results provide a link between consumer body size, variation in consumer behavior, and primary production—which, in turn, will support secondary production for fisheries. Our study suggests that human‐induced changes—such as fishing—that alter consumer body size and behavior will fundamentally change ecosystem‐scale production dynamics. Understanding the ecosystem effects of harvest on consumer populations is critical for ecosystem‐based management, including the development of ARs for fisheries. 
    more » « less
  3. Abstract Despite growing interest in conservation and re‐establishment of ecological connectivity, few studies have explored its context‐specific social–ecological outcomes. We aimed to explore social and ecological outcomes to changing stream connectivity for both stakeholders and native fish species impacted by habitat fragmentation and nonnative species. We (1) investigated stakeholder perceptions of the drivers and outcomes of stream connectivity, and (2) evaluated the effects of stakeholder‐identified connectivity and nonnative species scenarios on Yellowstone cutthroat trout (YCT) populations. Our study was conducted in the Teton River, Idaho, USA. We integrated two modeling approaches, mental modeling and individual‐based ecological modeling, to explore social–ecological outcomes for stakeholders and YCT populations. Aggregation of mental models revealed an emergent pattern of increasing complexity as more types of stakeholders were considered, as well as gaps and linkages among different stakeholder knowledge areas. These results highlight the importance of knowledge sharing among stakeholders when making decisions about connectivity. Additionally, the results from the individual‐based models suggested that the potential for a large, migratory life history form of YCT, in addition to self‐preference mating where they overlap with rainbow trout, had the strongest effects on outcomes for YCT. Exploring social and ecological drivers and outcomes to changing connectivity is useful for anticipating and adapting to unintended outcomes, as well as making decisions for desirable outcomes. The results from this study can contribute to the management dialogue surrounding stream connectivity in the Teton River, as well as to our understanding of connectivity conservation and its outcomes more broadly. 
    more » « less
  4. Abstract Trophic interactions operate across the lifetime of an individual organism, yet our understanding of these processes is largely limited to a single life stage or moment in time. Management and conservation implications of this knowledge gap are particularly important, given the mounting number, spread, and ecological impacts of invasive species. Biotracers, such as carbon and nitrogen stable isotopes of animal muscle, are commonly used to characterize the trophic ecology of an individual but fail to capture intraindividual variation and ontogenetic dietary shifts. However, recent work suggests that eye lenses may facilitate the reconstruction of individual lifetime trophic trajectories for fishes, including the chronology of past trophic positions of and carbon flow to consumers. By combining stable isotope analysis of fish eye lens tissue with aging techniques (otolith growth measurements), this study is the first to ask how the lifetime trophic niches of individuals vary within different community contexts. The results provide evidence for asymmetric competition causing differing trajectories in lifetime trophic niches for native and nonnative fishes along an invasion gradient in Burro Creek, Arizona, USA. Native roundtail chub, Sonora sucker, and desert sucker all displayed a coordinated displacement of lifetime trophic trajectories to a lower trophic level and reliance on aquatic, rather than terrestrial, resources as indicated by a shift to lower δ13C and δ15N in mixed, relative to native‐only, communities. By contrast, the trophic trajectories of nonnative green sunfish and bullhead species remained consistent between native and nonnative dominated communities. The presence of nonnative species led to a significantly greater decrease in δ13C through ontogeny for roundtail chub, a species of conservation concern in Arizona. These results demonstrate the prolonged trophic impact of nonnative fishes on native fishes beyond a single life stage. Displacement of ontogenetic dietary shifts by native fishes through interactions with nonnative species may lead to reduced fish growth and fitness, with implications at the population and ecosystem levels. Stable isotope analysis of fish eye lens tissue offers new opportunities to study the lifetime chronology of individual feeding habits and allows for exploration of the impacts of invasive species and environmental change throughout ontogeny. 
    more » « less
  5. Abstract Fish contribute to the export of carbon out of the euphotic zone. They ingest organic carbon fixed by phytoplankton, store it in their tissues for their lifetime, and contribute to long‐term sequestration by producing sinking fecal pellets, respiring at depth, or via their own sinking carcasses. While the flux of carbon through fish is small relative to the export flux by plankton, humans have a direct influence on fish communities and thus on the magnitude of carbon storage and flux. We use a size spectrum model to examine the combined effect of fishing and trophic dynamics on the total carbon stored as biomass of a simulated community of fish. By sampling 10,500 possible fishing strategies that randomize fishing mortality and size‐selectivity, we consider optimal strategies that balance several UN Sustainable Development Goals addressing (1) food security, (2) climate action, and (3) marine conservation. The model shows that fishery management strategies that preferentially conserve large species increase overall carbon stored in the fish community. This study presents a perspective for considering carbon storage and sequestration in fisheries management alongside alternative objectives such as food production and biodiversity conservation. Our study focused on the state (total carbon in the living community). Incorporating rate processes like fecal pellet flux, vertical migration, and natural mortality would build toward a more holistic carbon approach to fisheries management. 
    more » « less