skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flexible, Miniaturized Sensing Probes Inspired by Biofuel Cells for Monitoring Synaptically Released Glutamate in the Mouse Brain
Abstract Chemical biomarkers in the central nervous system can provide valuable quantitative measures to gain insight into the etiology and pathogenesis of neurological diseases. Glutamate, one of the most important excitatory neurotransmitters in the brain, has been found to be upregulated in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, stroke, epilepsy, chronic pain, and migraines. However, quantitatively monitoring glutamate release in situ has been challenging. This work presents a novel class of flexible, miniaturized probes inspired by biofuel cells for monitoring synaptically released glutamate in the nervous system. The resulting sensors, with dimensions as low as 50 by 50 μm, can detect real‐time changes in glutamate within the biologically relevant concentration range. Experiments exploiting the hippocampal circuit in mice models demonstrate the capability of the sensors in monitoring glutamate release via electrical stimulation using acute brain slices. These advances could aid in basic neuroscience studies and translational engineering, as the sensors provide a diagnostic tool for neurological disorders. Additionally, adapting the biofuel cell design to other neurotransmitters can potentially enable the detailed study of the effect of neurotransmitter dysregulation on neuronal cell signaling pathways and revolutionize neuroscience.  more » « less
Award ID(s):
2011876 2223387
PAR ID:
10468801
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
42
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Glutamate is one of the most important excitatory neurotransmitters within the mammalian central nervous system. The role of glutamate in regulating neural network signaling transmission through both synaptic and extra‐synaptic paths highlights the importance of the real‐time and continuous monitoring of its concentration and dynamics in living organisms. Progresses in multidisciplinary research have promoted the development of electrochemical glutamate sensors through the co‐design of materials, interfaces, electronic devices, and integrated systems. This review summarizes recent works reporting various electrochemical sensor designs and their applicability as miniaturized neural probes to in vivo sensing within biological environments. We start with an overview of the role and physiological significance of glutamate, the metabolic routes, and its presence in various bodily fluids. Next, we discuss the design principles, commonly employed validation models/protocols, and successful demonstrations of multifunctional, compact, and bio‐integrated devices in animal models. The final section provides an outlook on the development of the next generation glutamate sensors for neuroscience and neuroengineering, with the aim of offering practical guidance for future research. 
    more » « less
  2. Neurotransmitters play a crucial role in regulating communication between neurons within the brain and central nervous system. Thus, imaging neurotransmitters has become a high priority in neuroscience. This minireview focuses on recent advancements in the development of fluorescent small‐molecule fluorescent probes for neurotransmitter imaging and applications of these probes in neuroscience. Innovative approaches for probe design are highlighted as well as attributes which are necessary for practical utility, with a view to inspiring new probe development capable of visualizing neurotransmitters. 
    more » « less
  3. Neurotransmitters are used by the nervous system to transmit messages between neurons. The abnormal levels of the neurotransmitters may lead to neurological disorders. It is very important to monitor their levels in patients. Herein, we report a polymer nanostructured electrode-enabled electrochemical sensing microchip for detecting dopamine and serotonin. The nanostructures on the electrode can enhance the surface area of the electrode dramatically. As a result, the measured electrical signals increased in comparison with those of an electrochemical sensor with an electrode of a flat surface. It has been found that this microchip can detect neurotransmitters with a level as low as ~120 nM with high specificity and can be used to monitor the dopamine and serotonin in a mixed sample successfully in both static and dynamic conditions. Finally, the real-time measurements of dopamine released from N27-A dopaminergic neural cells using the microchip have been demonstrated. 
    more » « less
  4. Dopamine (DA) is an important neurotransmitter, which is essential for transmitting signals in neuronal communications. The deficiency of DA release from neurons is implicated in neurological disorders. There has been great interest in developing new optical probes for monitoring the release behavior of DA from neurons. H-aggregates of organic dyes represent an ordered supramolecular structure with delocalized excitons. In this paper, we use the self-assembly of 3,3′-diethylthiadicarbocyanine iodide (DiSC 2 (5)) in ammonia solution to develop crystalline H-aggregate nanoparticles, in which DiSC 2 (5) molecules show long-range π–π stacking. The crystalline H-aggregate nanoparticles are stable in cell culture medium and can serve as an efficient photo-induced electron transfer (PET) probe for the detection of DA with the concentration as low as 0.1 nM in cell culture medium. Furthermore, the crystalline H-aggregate nanoparticle-based PET probe is used to detect the release behavior of DA from the M17 human neuroblastoma cells. We find that the DA release from the cells is enhanced by nicotine stimulations. Our results highlight the potential of crystalline H-aggregate nanoparticle-based PET probes for diagnosing nervous system diseases and verifying therapies. 
    more » « less
  5. The blood–brain barrier (BBB) is a vital structure for maintaining homeostasis between the blood and the brain in the central nervous system (CNS). Biomolecule exchange, ion balance, nutrition delivery, and toxic molecule prevention rely on the normal function of the BBB. The dysfunction and the dysregulation of the BBB leads to the progression of neurological disorders and neurodegeneration. Therefore, in vitro BBB models can facilitate the investigation for proper therapies. As the demand increases, it is urgent to develop a more efficient and more physiologically relevant BBB model. In this review, the development of the microfluidics platform for the applications in neuroscience is summarized. This article focuses on the characterizations of in vitro BBB models derived from human stem cells and discusses the development of various types of in vitro models. The microfluidics-based system and BBB-on-chip models should provide a better platform for high-throughput drug-screening and targeted delivery. 
    more » « less