skip to main content


Title: Properties of infinite product amplitudes: Veneziano, Virasoro, and Coon
A<sc>bstract</sc>

We detail the properties of the Veneziano, Virasoro, and Coon amplitudes. These tree-level four-point scattering amplitudes may be written as infinite products with an infinite sequence of simple poles. Our approach for the Coon amplitude uses the mathematical theory ofq-analysis. We interpret the Coon amplitude as aq-deformation of the Veneziano amplitude for allq ≥0 and discover a new transcendental structure in its low-energy expansion. We show that there is no analogousq-deformation of the Virasoro amplitude.

 
more » « less
Award ID(s):
1914412
NSF-PAR ID:
10468924
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
12
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    We analyze so-called generalized Veneziano and generalized Virasoro amplitudes. Under some physical assumptions, we find that their spectra must satisfy an over-determined set of non-linear recursion relations. The recursion relation for the generalized Veneziano amplitudes can be solved analytically and yields a two-parameter family which includes the Veneziano amplitude, the one-parameter family of Coon amplitudes, and a larger two-parameter family of amplitudes with an infinite tower of spins at each mass level. In the generalized Virasoro case, the only consistent solution is the string spectrum.

     
    more » « less
  2. A<sc>bstract</sc>

    We employ semiclassical quantization to calculate spectrum of quantum KdV charges in the limit of large central chargec. Classically, KdV chargesQ2n−1generate completely integrable dynamics on the co-adjoint orbit of the Virasoro algebra. They can be expressed in terms of action variablesIk, e.g. as a power series expansion. Quantum-mechanically this series becomes the expansion in 1/c, while action variables become integer-valued quantum numbersni. Crucially, classical expression, which is homogeneous inIk, acquires quantum corrections that include terms of subleading powers innk. At first two non-trivial orders in 1/cexpansion these “quantum” terms can be fixed from the analytic form ofQ2n−1acting on the primary states. In this way we find explicit expression for the spectrum ofQ2n−1up to first three orders in 1/cexpansion. We apply this result to study thermal expectation values ofQ2n−1and free energy of the KdV Generalized Gibbs Ensemble.

     
    more » « less
  3. A bstract We compute the three-loop corrections to the helicity amplitudes for q $$ \overline{q} $$ q ¯ → Q $$ \overline{Q} $$ Q ¯ scattering in massless QCD. In the Lorentz decomposition of the scattering amplitude we avoid evanescent Lorentz structures and map the corresponding form factors directly to the physical helicity amplitudes. We reduce the amplitudes to master integrals and express them in terms of harmonic polylogarithms. The renormalised amplitudes exhibit infrared divergences of dipole and quadrupole type, as predicted by previous work on the infrared structure of multileg scattering amplitudes. We derive the finite remainders and present explicit results for all relevant partonic channels, both for equal and different quark flavours. 
    more » « less
  4. We prove that general two-variable partial theta functions with periodic coefficients are quantum Jacobi forms, and establish their explicit transformation and analytic properties. As applications, we also prove that seven infinite families of q-hypergeometric multisums and related partial theta functions of interest arising from certain knot colored Jones polynomials, Kashaev invariants for torus knots and Virasoro characters, and ``strange” identities, appearing in (separate) works 
    more » « less
  5. Abstract

    The 5:3 and 7:4 mean motion resonances of Neptune are at 42.3 and 43.7 au, respectively, and overlap with objects in the classical trans-Neptunian belt (Kuiper Belt). We report the complete/partial lightcurves of 13 and 14 trans-Neptunian objects (TNOs) in the 5:3 and 7:4 resonances, respectively. We report a most likely contact binary in the 7:4 resonance, 2013 FR28, with a periodicity of 13.97 ± 0.04 hr and a lightcurve amplitude of 0.94 ± 0.02 mag. With a V-/U-shaped lightcurve, 2013 FR28has one of the largest well-sampled TNO amplitudes observed with ground-based observations, comparable to the well-determined contact binary 2001 QG298. 2013 FR28has a mass ratioq∼ 1 with a densityρ∼ 1 g cm−3. We find several objects with large amplitudes and classify 2004 SC60, 2006 CJ69, and 2013 BN82as likely contact binaries and 2001 QF331, 2003 YW179, and 2015 FP345as likely elongated objects. We observe the 17:9 resonant or classical object 2003 SP317that we classify as a likely contact binary. A lower estimate of 10%–50% and 20%–55% for the fraction of (nearly) equal-sized contact binaries is calculated in the 5:3 and 7:4 resonances, respectively. Surface colors of 2004 SC60, 2013 BN82, 2014 OL394, and 2015 FP345have been obtained. Including these colors with ones from the literature reveals that elongated objects and contact binaries share the same ultrared surface color, except Manwë–Thorondor and 2004 SC60. Not only are the colors of the 7:4 and 5:3 TNOs similar to the cold classicals, but we demonstrate that the rotational properties of the 5:3 and 7:4 resonants are similar to those of the cold classicals, inferring a clear link between these subpopulations.

     
    more » « less