skip to main content


Title: Scalable photonic integrated circuits for high-fidelity light control

Advances in laser technology have driven discoveries in atomic, molecular, and optical (AMO) physics and emerging applications, from quantum computers with cold atoms or ions, to quantum networks with solid-state color centers. This progress is motivating the development of a new generation of optical control systems that can manipulate the light field with high fidelity at wavelengths relevant for AMO applications. These systems are characterized by criteria: (C1) operation at a design wavelength of choice in the visible (VIS) or near-infrared (IR) spectrum, (C2) a scalable platform that can support large channel counts, (C3) high-intensity modulation extinction and (C4) repeatability compatible with low gate errors, and (C5) fast switching times. Here, we provide a pathway to address these challenges by introducing an atom control architecture based on VIS-IR photonic integrated circuit (PIC) technology. Based on a complementary metal–oxide–semiconductor fabrication process, this atom-control PIC (APIC) technology can meet system requirements (C1)–(C5). As a proof of concept, we demonstrate a 16-channel silicon-nitride-based APIC with (5.8±0.4)ns response times and >30dB extinction ratio at a wavelength of 780 nm.

 
more » « less
Award ID(s):
1747426
NSF-PAR ID:
10469038
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
10
Issue:
10
ISSN:
2334-2536
Format(s):
Medium: X Size: Article No. 1366
Size(s):
["Article No. 1366"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µm resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3and 73.8 dB·Hz2/3third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.

     
    more » « less
  2. A central goal in creating long-distance quantum networks and distributed quantum computing is the development of interconnected and individually controlled qubit nodes. Atom-like emitters in diamond have emerged as a leading system for optically networked quantum memories, motivating the development of visible-spectrum, multi-channel photonic integrated circuit (PIC) systems for scalable atom control. However, it has remained an open challenge to realize optical programmability with a qubit layer that can achieve high optical detection probability over many optical channels. Here, we address this problem by introducing a modular architecture of piezoelectrically actuated atom-control PICs (APICs) and artificial atoms embedded in diamond nanostructures designed for high-efficiency free-space collection. The high-speed four-channel APIC is based on a splitting tree mesh with triple-phase shifter Mach–Zehnder interferometers. This design simultaneously achieves optically broadband operation at visible wavelengths, high-fidelity switching (>40dB) at low voltages, submicrosecond modulation timescales (>30MHz), and minimal channel-to-channel crosstalk for repeatable optical pulse carving. Via a reconfigurable free-space interconnect, we use the APIC to address single silicon vacancy color centers in individual diamond waveguides with inverse tapered couplers, achieving efficient single photon detection probabilities (∼15%) and second-order autocorrelation measurementsg(2)(0)<0.14 for all channels. The modularity of this distributed APIC–quantum memory system simplifies the quantum control problem, potentially enabling further scaling to thousands of channels.

     
    more » « less
  3. The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has shown attractive prospects in abundance and high atomic diffusion property of oxygen atoms, transparency. Additionally, its electrical properties can be easily modulated by controlling the stoichiometric ratio of indium and gallium as well as oxygen potential in the sputter gas. Moreover, since the IGZO can be applied to both the thin-film transistor (TFT) channel and RS layer, it has a great potential for fully integrated transparent electronics application. In this work, we proposed amorphous transparent IGZO-based RRAMs and investigated switching behaviors of the memory cells prepared with different top electrodes. First, ITO was choosing to serve as both TE and BE to achieve high transmittance. A multi-target magnetron sputtering system was employed to deposit all three layers (TE, RS, BE layers) on glass substrate. I-V characteristics were evaluated by a semiconductor parameter analyzer, and the bipolar RS feature of our RRAM devices was demonstrated by typical butterfly curves. The optical transmission analysis was carried out via a UV-Vis spectrometer and the average transmittance was around 80% out of entire devices in the visible-light wavelength range, implying high transparency. We adjusted the oxygen partial pressure during the sputtering of IGZO to optimize the property because the oxygen vacancy concentration governs the RS performance. Electrode selection is crucial and can impact the performance of the whole device. Thus, Cu TE was chosen for our second type of device because the diffusion of Cu ions can be beneficial for the formation of the conductive filament (CF). A ~5 nm SiO 2 barrier layer was employed between TE and RS layers to confine the diffusion of Cu into the RS layer. At the same time, this SiO 2 inserting layer can provide an additional interfacial series resistance in the device to lower the off current, consequently, improve the on/off ratio and whole performance. Finally, an oxygen affinity metal Ti was selected as the TE for our third type of device because the concentration of the oxygen atoms can be shifted towards the Ti electrode, which provides an oxygengettering activity near the Ti metal. This process may in turn lead to the formation of a sub-stoichiometric region in the neighboring oxide that is believed to be the origin of better performance. In conclusion, the transparent amorphous IGZO-based RRAMs were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of RRAMs, we integrated a set of TE materials, and a barrier layer on IGZO-based RRAM and compared the switch characteristics. Our encouraging results clearly demonstrate that IGZO is a promising material in RRAM applications and breaking the bottleneck of current memory technologies. 
    more » « less
  4. The major focus of artificial intelligence (AI) research is made on biomimetic synaptic processes that are mimicked by functional memory devices in the computer industry [1]. It is urgent to find a memory technology for suiting with Brain-Inspired Computing to break the von Neumann bottleneck which limits the efficiency of conventional computer architectures [2]. Silicon-based flash memory, which currently dominates the market for data storage devices, is facing challenging issues to meet the needs of future data storage device development due to the limitations, such as high-power consumption, high operation voltage, and low retention capacity [1]. The emerging resistive random-access memory (RRAM) has elicited intense research as its simple sandwiched structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer, can store data using RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). This class of emerging devices is expected to outperform conventional memory devices [3]. Specifically, the advantages of RRAM include low-voltage operation, short programming time, great cyclic stability, and good scalability [4]. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has attracted attention because of its abundance and high atomic diffusion property of oxygen atoms, transparency, and its easily modulated electrical properties by controlling the stoichiometric ratio of indium and gallium as well as oxygen potential in the sputter gas [5, 6]. Moreover, since the IGZO can be applied to both the thin-film transistor (TFT) channel and RS layer, the IGZO-based fully integrated transparent electronics are very promising [5]. In this work, we proposed transparent IGZO-based RRAMs. First, we chose ITO to serve as both TE and BE to achieve high transmittance in the visible regime of light. All three layers (TE, RS, BE layers) were deposited using a multi-target magnetron sputtering system on glass substrates to demonstrate fully transparent oxide-based devices. I-V characteristics were evaluated by a semiconductor parameter analyzer, and our devices showed typical butterfly curves indicating the bipolar RS property. And the IGZO-based RRAM can survive more than 50 continuous sweeping cycles. The optical transmission analysis was carried out via an UV-Vis spectrometer and the average transmittance around 80% out of entire devices in the visible-light wavelength range, implying high transparency. To investigate the thickness dependence on the properties of RS layer, 50nm, 100nm and 150nm RS layer of IGZO RRAM were fabricated. Also, the oxygen partial pressure during the sputtering of IGZO was varied to optimize the property because the oxygen vacancy concentration governs the RS and RRAM performance. Electrode selection is crucial and can impact the performance of the whole device [7]. Thus, Cu TE was chosen for our second type of device because the diffusion of Cu ions can be beneficial for the formation the conductive filament (CF). Finally, a ~5 nm SiO2 barrier layer was employed between TE and RS layers to confine the diffusion of Cu into the RS layer. At the same time, this SiO2 inserting layer can provide an additional interfacial series resistance in the device to lower the off current, consequently, improve the on/off ratio and whole performance. In conclusion, the transparent IGZO-based RRAMs were established. To tune the property of RS layer, the thickness layer and sputtering conditions of RS were adjusted. In order to engineer the diffusion capability of the TE material to the RS layer and the BE, a set of TE materials and a barrier layer were integrated in IGZO-based RRAM and the performance was compared. Our encouraging results clearly demonstrate that IGZO is a promising material in RRAM applications and overcoming the bottleneck of current memory technologies. 
    more » « less
  5. Abstract

    A terahertz (THz) frequency comb capable of high-resolution measurement will significantly advance THz technology application in spectroscopy, metrology and sensing. The recently developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great potentials with high power and broadband spectrum. Here, we report a room temperature THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR comb with an integrated mid-IR single mode based on distributed-feedback grating without using external optical elements. The grating Bragg wavelength is largely detuned from the gain peak to suppress the grating dispersion and support the comb operation in the high gain spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb will find applications to room temperature chip-based THz spectroscopy.

     
    more » « less