skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bottom-Up Construction of the Interaction between Janus Particles
While the interaction between two uniformly charged spheres—viz colloids—is well- known, the interaction between non-uniformly charges spheres such as Janus particles is not. Specifically, the Derjaguin approximation relates the potential energy between two spherical particles with the interaction energy Vpl per unit area between two pla- nar surfaces. The formalism has been extended to obtain a quadrature expression for the screened electrostatic interaction between Janus colloids with variable relative orientations. The interaction is decomposed into three zones in the parametric space, distinguished by their azimuthal symmetry. Different specific situations are examined to estimate the contributions of these zones to the total energy. The effective potential Vpl is renormalized such that the resulting potential energy is identical to the actual one for the most preferable relative orientations between the Janus particles. The po- tential energy as a function of the separation distance and the mutual orientation of a pair of particles compares favorably between the analytical (but approximate) form and the rigorous point-wise computational model used earlier. Coarse-grained models of Janus particles can thus implement this potential model efficiently without loss of generality.  more » « less
Award ID(s):
2102455
PAR ID:
10469086
Author(s) / Creator(s):
;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
The Journal of Physical Chemistry B
Volume:
127
Issue:
7
ISSN:
1520-6106
Page Range / eLocation ID:
1664 to 1673
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Liquid–liquid or liquid–air interfaces provide interesting environments to study colloids and are ubiquitous in nature and industry, as well as relevant in applications involving emulsions and foams. They present a particularly intriguing environment for studying active particles that exhibit a host of phenomena not seen in passive systems. Active particles can also provide on‐demand controllability that greatly expands their use in future applications. However, research on active particles at interfaces is relatively rare compared to those at solid surfaces or in the bulk. It is studied magnetically steerable active colloids at a liquid–air interface that self‐propel by bubble production via the catalytic decomposition of chemical fuel in the liquid medium. It is investigated the bubble formation and dynamics of “patchy” colloids with a patch of catalytic coating on their surface and compare to more traditional Janus colloids with a hemispherical coating. It is found that the patchy colloids have a tendency to produce smaller bubbles and undergo smoother motion which makes them beneficial for applications such as precise micro‐manipulation. this it is demonstrated by using them to manipulate and assemble patterns of passive spheres on a substrate as well as at an air–liquid interface. It is also characterized the propulsion and bubble formation of both the Janus and patchy colloids and find that previously proposed theories are insufficient to fully describe their motion and bubble bursting mechanism. Additionally, it is observed that the colloids, which reside at the air–liquid interface, demonstrate novel interfacial positive gravitaxis toward the droplet edges, which it is attributed to a torque resulting from opposing downward and buoyant forces on the colloids. 
    more » « less
  2. Platinum-coated Janus colloids exhibit self-propelled motion in aqueous solution via the catalytic decomposition of hydrogen peroxide. Here, we report their motion in a uniformly aligned nematic phase of lyotropic chromonic liquid crystal, disodium cromoglycate (DSCG). When active Janus colloids are placed in DSCG, we find that the anisotropy of the liquid crystal imposes a strong sense of direction to their motion; the Janus colloids tend to move parallel to the nematic director. Motion analysis over a range of timescales reveals a crossover from ballistic to anomalous diffusive behavior on timescales below the relaxation time for liquid crystal elastic distortions. Surprisingly we observe that smaller particles roll during ballistic motion, whereas larger particles do not. This result highlights the complexity of phoretically-driven particle motion, especially in an anisotropic fluid environment. 
    more » « less
  3. The self-assembly of colloidal magnetic Janus particles with a laterally displaced (or shifted), permanent dipole in a quasi-two-dimensional system is studied using Brownian dynamics simulations. The rate of formation of clusters and their structures are quantified for several values of dipolar shift from the particle center, which is nondimensionalized using the particle's radius so that it takes values ranging from 0 to 1, and examined under different magnetic interaction strengths relative to Brownian motion. For dipolar shifts close to 0, chain-like structures are formed, which grow at long times following a power law, while particles of shift higher than 0.2 generally aggregate in ring-like clusters that experience limited growth. In the case of shifts between 0.4 and 0.5, the particles tend to aggregate in clusters of 3 to 6, while for all shifts higher than 0.6 clusters rarely contain more than 3 particles due to the antiparallel dipole orientations that are most stable at those shifts. The strength of the magnetic interactions hastens the rate at which clusters are formed; however, the effect it has on cluster size is lessened by increases in the shift of the dipoles. These results contribute to better understand the dynamics of magnetic Janus particles and can help the synthesis of functionalized materials for specific applications such as drug delivery. 
    more » « less
  4. null (Ed.)
    Colloidal gels represent an important class of soft matter, in which networks formed due to strong, short-range interactions display solid-like mechanical properties, such as a finite low-frequency elastic modulus. Here we examine the effect of embedded active colloids on the linear viscoelastic moduli of fractal cluster colloidal gels. We find that the autonomous, out-of-equilibrium dynamics of active colloids incorporated into the colloidal network decreases gel elasticity, in contrast to observed stiffening effects of myosin motors in actin networks. Fractal cluster gels are formed by the well-known mechanism of aggregating polystyrene colloids through addition of divalent electrolyte. Active Janus particles with a platinum hemisphere are created from the same polystyrene colloids and homogeneously embedded in the gels at dilute concentration at the time of aggregation. Upon addition of hydrogen peroxide – a fuel that drives the diffusiophoretic motion of the embedded Janus particles – the microdynamics and mechanical rheology change in proportion to the concentration of hydrogen peroxide and the number of active colloids. We propose a theoretical explanation of this effect in which the decrease in modulus is mediated by active motion-induced softening of the inter-particle attraction. Furthermore, we characterize the failure of the fluctuation–dissipation theorem in the active gels by identifying a discrepancy between the frequency-dependent macroscopic viscoelastic moduli and the values predicted by microrheology from measurement of the gel microdynamics. These findings support efforts to engineer gels for autonomous function by tuning the microscopic dynamics of embedded active particles. Such reconfigurable gels, with multi-state mechanical properties, could find application in materials such as paints and coatings, pharmaceuticals, self-healing materials, and soft robotics. 
    more » « less
  5. Anisotropic potentials in Janus colloids provide additional freedom to control particle aggregation into structures of different sizes and morphologies. In this work, we perform Brownian dynamics simulations of a dilute suspension of magnetic spherical Janus colloids with their magnetic dipole moments shifted radially towards the surface of the particle in order to gain valuable microstructural insight. Properties such as the mean cluster size, orientational ordering, and nucleation and growth are examined dynamically. Differences in the structure of clusters and in the aggregation process are observed depending on the dipolar shift ( s )—the ratio between the displacement of the dipole and the particle radius—and the dipolar coupling constant ( λ )—the ratio between the magnetic dipole–dipole and Brownian forces. Using these two dimensionless quantities, a structural “phase” diagram is constructed. Each phase corresponds to unique nucleation and growth behavior and orientational ordering of dipoles inside clusters. At small λ , the particles aggregate and disaggregate resulting in short-lived clusters at small s , while at high s the particles aggregate in permanent triplets (long-lived clusters). At high λ , the critical nuclei formed during the nucleation process are triplets and quadruplets with unique orientational ordering. These small clusters then serve as building blocks to form larger structures, such as single-chain, loop-like, island-like, worm-like, and antiparallel-double-chain clusters. This study shows that dipolar shifts in colloids can serve as a control parameter in applications where unique size, morphology, and aggregation kinetics of clusters are required. 
    more » « less