We present verification of a bare-metal server built using diverse implementation techniques and languages against a whole-system input-output specification in terms of machine code, network packets, and mathematical specifications of elliptic-curve cryptography. We used very different formal-reasoning techniques throughout the stack, ranging from computer algebra, symbolic execution, and verification-condition generation to interactive verification of functional programs including compilers for C-like and functional languages. All these component specifications and domain-specific reasoning techniques are defined and justified against common foundations in the Coq proof assistant. Connecting these components is a minimalistic specification style based on functional programs and assertions over simple objects, omnisemantics for program execution, and basic separation logic for memory layout. This design enables us to bring the components together in a top-level correctness theorem that can be audited without understanding or trusting the internal interfaces and tools. Our case study is a simple cryptographic server for flipping of a bit of state through public-key authenticated network messages, and its proof shows total functional correctness including static bounds on memory usage. This paper also describes our experiences with the specific verification tools we build upon, along with detailed analysis of reasons behind the widely varying levels of productivity we experienced between combinations of tools and tasks. 
                        more » 
                        « less   
                    
                            
                            CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives
                        
                    
    
            Most software domains rely on compilers to translate high-level code to multiple different machine languages, with performance not too much worse than what developers would have the patience to write directly in assembly language. However, cryptography has been an exception, where many performance-critical routines have been written directly in assembly (sometimes through metaprogramming layers). Some past work has shown how to do formal verification of that assembly, and other work has shown how to generate C code automatically along with formal proof, but with consequent performance penalties vs. the best- known assembly. We present CryptOpt, the first compilation pipeline that specializes high-level cryptographic functional programs into assembly code significantly faster than what GCC or Clang produce, with mechanized proof (in Coq) whose final theorem statement mentions little beyond the input functional program and the operational semantics of x86-64 assembly. On the optimization side, we apply randomized search through the space of assembly programs, with repeated automatic benchmarking on target CPUs. On the formal-verification side, we connect to the Fiat Cryptography framework (which translates functional programs into C-like IR code) and extend it with a new formally verified program-equivalence checker, incorporating a modest subset of known features of SMT solvers and symbolic-execution engines. The overall prototype is quite practical, e.g. producing new fastest-known implementations of finite-field arithmetic for both Curve25519 (part of the TLS standard) and the Bitcoin elliptic curve secp256k1 for the Intel 12𝑡ℎ and 13𝑡ℎ generations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2130671
- PAR ID:
- 10469239
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 7
- Issue:
- PLDI
- ISSN:
- 2475-1421
- Page Range / eLocation ID:
- 1268 to 1292
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Writing certifiably correct system software is still very labor-intensive, and current programming languages are not well suited for the task. Proof assistants work best on programs written in a high-level functional style, while operating systems need low-level control over the hardware. We present DeepSEA, a language which provides support for layered specification and abstraction refinement, effect encapsulation and composition, and full equational reasoning. A single DeepSEA program is automatically compiled into a certified ``layer'' consisting of a C program (which is then compiled into assembly by CompCert), a low-level functional Coq specification, and a formal (Coq) proof that the C program satisfies the specification. Multiple layers can be composed and interleaved with manual proofs to ascribe a high-level specification to a program by stepwise refinement. We evaluate the language by using it to reimplement two existing verified programs: a SHA-256 hash function and an OS kernel page table manager. This new style of programming language design can directly support the development of correct-by-construction system software.more » « less
- 
            There are typically two ways to compile and run a purely functional program verified using an interactive theorem prover (ITP): automatically extracting it to a similar language (typically an unverified process, like Coq to OCaml) or manually proving it equivalent to a lower-level reimplementation (like a C program). Traditionally, only the latter produced both excellent performance and end-to-end proofs. This paper shows how to recast program extraction as a proof-search problem to automatically derive correct-by-construction, high-performance code from purely functional programs. We call this idea relational compilation — it extends recent developments with novel solutions to loop-invariant inference and genericity in kinds of side effects. Crucially, relational compilers are incomplete, and unlike traditional compilers, they generate good code not because of a fixed set of clever built-in optimizations but because they allow experts to plug in domain-specific extensions that give them complete control over the compiler's output. We demonstrate the benefits of this approach with Rupicola, a new compiler-construction toolkit designed to extract fast, verified, idiomatic low-level code from annotated functional models. Using case studies and performance benchmarks, we show that it is extensible with minimal effort and that it achieves performance on par with that of handwritten C programs.more » « less
- 
            Knox is a new framework that enables developers to build hardware security modules (HSMs) with high assurance through formal verification. The goal is to rule out all hardware bugs, software bugs, and timing side channels. Knox's approach is to relate an implementation's wire-level behavior to a functional specification stated in terms of method calls and return values with a new definition called information-preserving refinement (IPR). This definition captures the notion that the HSM implements its functional specification, and that it leaks no additional information through its wire-level behavior. The Knox framework provides support for writing specifications, importing HSM implementations written in Verilog and C code, and proving IPR using a combination of lightweight annotations and interactive proofs. To evaluate the IPR definition and the Knox framework, we verified three simple HSMs, including an RFC 6238-compliant TOTP token. The TOTP token is written in 2950 lines of Verilog and 360 lines of C and assembly. Its behavior is captured in a succinct specification: aside from the definition of the TOTP algorithm, the spec is only 10 lines of code. In all three case studies, verification covers entire hardware and software stacks and rules out hardware/software bugs and timing side channels.more » « less
- 
            Producing efficient array code is crucial in high-performance domains like image processing and machine learning. It requires the ability to control factors like compute intensity and locality by reordering computations into different stages and granularities with respect to where they are stored. However, traditional pure, functional tensor languages struggle to do so. In a previous publication, we introduced ATL as a pure, functional tensor language capable of systematically decoupling compute and storage order via a set of high-level combinators known as reshape operators. Reshape operators are a unique functional-programming construct since they manipulate storage location in the generated code by modifying the indices that appear on the left-hand sides of storage expressions. We present a formal correctness proof for an implementation of the compilation algorithm, marking the first verification of a lowering algorithm targeting imperative loop nests from a source functional language that enables separate control of compute and storage ordering. One of the core difficulties of this proof required properly formulating the complex invariants to ensure that these storage-index remappings were well-formed. Notably, this exercise revealed asoundness bugin the original published compilation algorithm regarding the truncation reshape operators. Our fix is a new type system that captures safety conditions that were previously implicit and enables us to prove compiler correctness for well-typed source programs. We evaluate this type system and compiler implementation on a range of common programs and optimizations, including but not limited to those previously studied to demonstrate performance comparable to established compilers like Halide.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    