skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Patchy and Pink: Dynamics of a Chlainomonas sp. ( Chlamydomonadales , chlorophyta) algal bloom on Bagley Lake, North Cascades, WA
Abstract Snow algal blooms frequently occur throughout alpine and polar environments during spring and summer months; however, our understanding of bloom dynamics is limited. We tracked a recurrent bloom of Chlainomonas sp. on Upper Bagley Lake in the North Cascade Mountains, USA, to assess the spatiotemporal dynamics in bloom color intensity, community photophysiology, and community composition over eight weeks. We found that the algae biomass had a dynamic patchy distribution over space and time, which was decoupled from changes in community composition and life-cycle progress averaged across the bloom. The proportional representation of Chlainomonas sp. remained consistent throughout the study while the overall community composition shows a progression through the bloom. We found that community photophysiology, measured by the maximum quantum yield of PSII (Fv/Fm), decreased on average throughout the bloom. These findings suggest that the Chlainomonas sp. community on Bagley Lake is not simply an algal bloom with rapid increase in biomass followed by a population crash, as is often seen in aquatic systems, though there is a physiological trajectory and sensitivity to environmental stress. These results contribute to our understanding of the biology of Chlainomonas sp. and its response to environmental stress, specifically an extreme warming event.  more » « less
Award ID(s):
2113745 2113746 2113747
PAR ID:
10469567
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
FEMS Microbiology Ecology
Volume:
99
Issue:
11
ISSN:
1574-6941
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beisner, Beatrix E (Ed.)
    Abstract Planktothrix agardhii dominates the cyanobacterial harmful algal bloom biomass in Sandusky Bay, Lake Erie (USA) from May until September. This filamentous cyanobacterium known parasites including the chytrid fungal species Rhizophydium sp. C02, which was previously isolated from this region. The purpose of our work has been to establish how parasitic interactions affect Planktothrix population dynamics during a bloom event. Samples analyzed from the 2015 to 2019 bloom seasons using quantitative PCR investigate the spatial and temporal prevalence of chytrid infections. Abiotic factors examined in lab include manipulating temperature (17–31°C), conductivity (0.226–1.225 mS/cm) and turbulence. Planktothrix-specific chytrids are present throughout the bloom period and are occasionally at high enough densities to exert parasitic pressure on their hosts. Temperatures above 27.1°C in lab can inhibit chytrid infection, indicating the presence of a possible upper thermal refuge for the host. Data suggest that chytrids can survive conductivity spikes in lab at levels three-fold above Sandusky Bay waters if given sufficient time (7–12 days), whereas increased turbulence in lab severely inhibits chytrid infections, perhaps due to disruption of chemical signaling. Overall, these data provide insights into the environmental conditions that inhibit chytrid infections during Planktothrix-dominated blooms in temperate waters. 
    more » « less
  2. Abstract Some biological invasions can result in algae blooms in the nearshore of clear lakes. We studied if an invasive crayfish (Pacifastacus leniusculus) modified the biomass and community composition of benthic macroinvertebrates and therefore led to a trophic cascade resulting in increased periphyton biomass, elevated littoral primary productivity, and benthic algae bloom in a lake with remarkable transparency [Crater Lake, Oregon, USA]. After quantifying the changes in the spatial distribution of invasive crayfish over a 13-year period, we compared biomass and community composition of littoral–benthic macroinvertebrates, periphyton biovolume, community composition, nutrient limitation, and the development of benthic algae bloom in locations with high and low crayfish density. In addition, we determined if the alteration in community structure resulted in directional changes to gross primary production and ecosystem respiration. The extent of crayfish distribution along the shoreline of Crater Lake doubled over a 13-year period, leaving less than 20% of the shoreline free from crayfish. At high crayfish density sites, benthic macroinvertebrate biomass was 99% lower, and taxa richness was 50% lower than at low crayfish areas. High crayfish sites show tenfold greater periphyton biovolume, sixfold higher periphyton biomass (chlorophylla), twofold higher metabolic productivity, and the presence of large filamentous algae (Cladophorasp.). The invasion of crayfish had negative consequences for a lake protected under the management of the USA National Park Service, with direct impacts on many levels of ecological organization. 
    more » « less
  3. Humbert, Jean-François (Ed.)
    Harmful algal blooms are commonly thought to be dominated by a single genus, but they are not homogenous communities. Current approaches, both molecular and culture-based, often overlook fine-scale variations in community composition that can influence bloom dynamics. We combined homology-based searches (BLASTX) and phylogenetics to distinguish and quantify Microcystis host and phage members across a summer season during a 2014 Microcystis- dominated bloom that occurred in Lake Tai ( Taihu ), China. We found 47 different genotypes of the Microcystis- specific DNA-dependent RNA polymerase ( rpo B), which included several morphospecies. Microcystis flos-aquae and Microcystis wesenbergii accounted for ~86% of total Microcystis transcripts, while the more commonly studied Microcystis aeruginosa only accounted for ~7%. Microcystis genotypes were classified into three temporal groups according to their expression patterns across the course of the bloom: early, constant and late. All Microcystis morphospecies were present in each group, indicating that expression patterns were likely dictated by competition driven by environmental factors, not phylogeny. We identified three primary Microcystis -infecting phages based on the viral terminase, including a novel Siphoviridae phage that may be capable of lysogeny. Within our dataset, Myoviridae phages consistent with those infecting Microcystis in a lytic manner were positively correlated to the early host genotypes, while the Siphoviridae phages were positively correlated to the late host genotypes, when the Myoviridae phages express putative genetic markers for lysogeny. The expression of genes in the microcystin-encoding mcy cassette was estimated using mcyA , which revealed 24 Microcystis- specific genotypes that were negatively correlated to the early host genotypes. Of all environmental factors measured, pH best described the temporal shift in the Microcystis community genotypic composition, promoting hypotheses regarding carbon concentration mechanisms and oxidative stress. Our work expounds on the complexity of HAB events, using a well-studied dataset to highlight the need for increased resolution of community dynamics. 
    more » « less
  4. Summary Interactions between bacteria and phytoplankton in the phycosphere have impacts at the scale of whole ecosystems, including the development of harmful algal blooms. The cyanobacteriumMicrocystiscauses toxic blooms that threaten freshwater ecosystems and human health globally.Microcystisgrows in colonies that harbour dense assemblages of other bacteria, yet the taxonomic composition of these phycosphere communities and the nature of their interactions withMicrocystisare not well characterized. To identify the taxa and compositional variance withinMicrocystisphycosphere communities, we performed 16S rRNA V4 region amplicon sequencing on individualMicrocystiscolonies collected biweekly via high‐throughput droplet encapsulation during a western Lake Erie cyanobacterial bloom. TheMicrocystisphycosphere communities were distinct from microbial communities in whole water and bulk phytoplankton seston in western Lake Erie but lacked ‘core’ taxa found across all colonies. However, dissimilarity in phycosphere community composition correlated with sampling date and theMicrocystis16S rRNA oligotype. Several taxa in the phycosphere were specific to and conserved withMicrocystisof a single oligotype or sampling date. Together, this suggests that physiological differences betweenMicrocystisstrains, temporal changes in strain phenotypes, and the composition of seeding communities may impact community composition of theMicrocystisphycosphere. 
    more » « less
  5. Humbert, Jean-François (Ed.)
    Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates ( Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp ( Exiguobacterium sp. JMULE1) to 5.7 Mbp ( Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis . Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai ( Taihu ) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis . 
    more » « less