We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1
Magnetic reconnection is often invoked as a source of high-energy particles, and in relativistic astrophysical systems it is regarded as a prime candidate for powering fast and bright flares. We present a novel analytical model—supported and benchmarked with large-scale three-dimensional kinetic particle-in-cell simulations in electron–positron plasmas—that elucidates the physics governing the generation of power-law energy spectra in relativistic reconnection. Particles with Lorentz factor
- NSF-PAR ID:
- 10469597
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 956
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L36
- Size(s):
- Article No. L36
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract σ (LRG), 5.7σ (ELG), and 11.1σ (QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi ), defined as , where ΩHi is the cosmic abundance of Hi ,b Hi is the linear bias of Hi , and 〈f μ 2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We find for LRGs (z = 0.84), for ELGs (z = 0.96), and for QSOs (z = 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv = − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz = 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far. -
Abstract We measure the CO-to-H2conversion factor (
α CO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofα COfor CO (2–1) and (1–0), respectively. The mean values forα CO (2–1)andα CO (1–0)are and , respectively. The CO-intensity-weighted mean is 5.69 forα CO (2–1)and 3.33 forα CO (1–0). We examine howα COscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( ). Among them, , ΣSFR, and the integrated CO intensity (W CO) have the strongest anticorrelation with spatially resolvedα CO. We provide linear regression results toα COfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenα COandW CO, metallicity, , and ΣSFR. We also find thatα COin each galaxy decreases with the stellar mass surface density (Σ⋆) in high-surface-density regions (Σ⋆≥ 100M ⊙pc−2), following the power-law relations and . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inα COwith increasing Σ⋆as a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inα CO. The decrease inα COat high Σ⋆is important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors. -
Abstract We present a spectroscopic analysis of Eridanus IV (Eri IV) and Centaurus I (Cen I), two ultrafaint dwarf galaxies of the Milky Way. Using IMACS/Magellan spectroscopy, we identify 28 member stars of Eri IV and 34 member stars of Cen I. For Eri IV, we measure a systemic velocity of
, and velocity dispersion . Additionally, we measure the metallicities of 16 member stars of Eri IV. We find a metallicity of , and resolve a dispersion ofσ [Fe/H]=0.20 ± 0.09. The mean metallicity is marginally lower than all other known ultrafaint dwarf galaxies, making it one of the most metal-poor galaxies discovered thus far. Eri IV also has a somewhat unusual right-skewed metallicity distribution. For Cen I, we find a velocityv sys= 44.9 ± 0.8 km s−1, and velocity dispersion . We measure the metallicities of 27 member stars of Cen I, and find a mean metallicity [Fe/H] = −2.57 ± 0.08, and metallicity dispersion . We calculate the systemic proper motion, orbit, and the astrophysical J-factor for each system, the latter of which indicates that Eri IV is a good target for indirect dark matter detection. We also find no strong evidence for tidal stripping of Cen I or Eri IV. Overall, our measurements confirm that Eri IV and Cen I are dark-matter-dominated galaxies with properties largely consistent with other known ultrafaint dwarf galaxies. The low metallicity, right-skewed metallicity distribution, and high J-factor make Eri IV an especially interesting candidate for further follow-up. -
Abstract We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (
β p= 0.25) collisionless ion–electron shocks with mass ratiom i/m e= 200, fast Mach number –4, and upstream magnetic field angleθ Bn= 55°–85° from the shock normal . It is known that shock electron heating is described by an ambipolar, -parallel electric potential jump, ΔB ϕ ∥, that scales roughly linearly with the electron temperature jump. Our simulations have –0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ ∥, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕ ∥in our low-β pshocks. We further focus on twoθ Bn= 65° shocks: a ( ) case with a long, 30d iprecursor of whistler waves along , and a ( ) case with a shorter, 5d iprecursor of whistlers oblique to both and ;B d iis the ion skin depth. Within the precursors,ϕ ∥has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the ,θ Bn= 65° case,ϕ ∥shows a weak dependence on the electron plasma-to-cyclotron frequency ratioω pe/Ωce, andϕ ∥decreases by a factor of 2 asm i/m eis raised to the true proton–electron value of 1836. -
Abstract We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲
z ≲ 2.6 (z mean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass of and a median star formation rate of . We measure the faint electron-temperature-sensitive [Oiii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of ( ). We investigate the applicability at highz of locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM *, our composite is well represented by thez ∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixedM *and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii ]λ 3729/[Oii ]λ 3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density of ( ) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz ∼ 2.