skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Barriers instructors experience in adopting active learning: Instrument development
Abstract BackgroundDespite well‐documented benefits, instructor adoption of active learning has been limited in engineering education. Studies have identified barriers to instructors’ adoption of active learning, but there is no well‐tested instrument to measure instructors perceptions of these barriers. PurposeWe developed and tested an instrument to measure instructors’ perceptions of barriers to adopting active learning and identify the constructs that coherently categorize those barriers. MethodWe used a five‐phase process to develop an instrument to measure instructors’ perceived barriers to adopting active learning. In Phase 1, we built upon the Faculty Instructional Barriers and Identity Survey (FIBIS) to create a draft instrument. In Phases 2 and 3, we conducted exploratory factor analysis (EFA) on an initial 45‐item instrument and a refined 21‐item instrument, respectively. We conducted confirmatory factor analysis (CFA) in Phases 4 and 5 to test the factor structure identified in Phases 2 and 3. ResultsOur final instrument consists of 17 items and four factors: (1) student preparation and engagement; (2) instructional support; (3) instructor comfort and confidence; and (4) institutional environment/rewards. Instructor responses indicated that time considerations do not emerge as a standalone factor. ConclusionsOur 17‐item instrument exhibits a sound factor structure and is reliable, enabling the assessment of perceived barriers to adopting active learning in different contexts. The four factors align with an existing model of instructional change in science, technology, engineering, and mathematics (STEM). Although time is a substantial instructor concern that did not comprise a standalone factor, it is closely related to multiple constructs in our final model.  more » « less
Award ID(s):
1821092 1821488
PAR ID:
10469719
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
112
Issue:
4
ISSN:
1069-4730
Format(s):
Medium: X Size: p. 1079-1108
Size(s):
p. 1079-1108
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundIn taking up educational technology tools and student‐centered instructional practice, there is consensus that instructors consider the unique aspects of their instructional context. However, tool adoption success is often framed narrowly by numerical uptake rates or by conformity with non‐negotiable components. PurposeWe pursue an alternative ecosystems framing which posits that variability among contexts is fundamental to understanding instructors' uptake of instructional tools and the ways their teaching trajectories develop over time. Design/MethodThrough a multiple‐case study approach using interviews, usage data, surveys, and records of community meetings, we examine 12 instructors' trajectories to illustrate the dynamic uptake of a technology tool. ResultsCross‐case analysis found that instructors' trajectories are tool‐mediated and community‐mediated. We present five cases in detail. Two foreground ways that instructors gained insight into student learning from student responses in the tool. Two illustrate the role played by the project's Community of Practice (CoP), an extra‐institutional support for deepening practice. The final case illustrates the complexity of an evolving instructional ecosystem and its role in instructors' satisfaction and continued use. ConclusionsUse of the educational technology tool perturbed ecosystems and supported instructors' evolving trajectories through mediation of instructor and student activity. Instructors' goals guided initial uptake, but both goals and practice were adapted using information from interactions with the tool and the CoP and changes in instructional contexts. The study confirms the need to understand the complexity of the uptake of innovations and illustrates opportunities for educators, developers, and administrators to enhance uptake and support diversity goals. 
    more » « less
  2. Active learning pedagogies are shown to enhance the outcomes of students, particularly in disciplines known for high attrition rates. Despite the demonstrated benefits of active learning, didactic lecture continues to predominate in science, technology, engineering, and mathematics (STEM) courses. Change agents and professional development programs have historically placed emphasis on develop–disseminate efforts for the adoption of research-based instructional strategies (RBIS). With numerous reported barriers and motivators for trying out and adopting active learning, it is unclear to what extent these factors are associated with adoption of RBIS and the effectiveness of change strategies. We present the results of a large-scale, survey-based study of introductory chemistry, mathematics, and physics instructors and their courses in the United States. Herein, we evaluate the association of 17 malleable factors with the tryout and adoption of RBIS. Multilevel logistic regression analyses suggest that several contextual, personal, and teacher thinking factors are associated with different stages of RBIS adoption. These results are also compared with analogous results evaluating the association of these factors with instructors’ time spent lecturing. We offer actionable implications for change agents to provide targeted professional development programming and for institutional leaders to influence the adoption of active learning pedagogies in introductory STEM courses. 
    more » « less
  3. Abstract BackgroundThe University of California system has a novel tenure-track education-focused faculty position called Lecturer with Security of Employment (working titles: Teaching Professor or Professor of Teaching). We focus on the potential difference in implementation of active-learning strategies by faculty type, including tenure-track education-focused faculty, tenure-track research-focused faculty, and non-tenure-track lecturers. In addition, we consider other instructor characteristics (faculty rank, years of teaching, and gender) and classroom characteristics (campus, discipline, and class size). We use a robust clustering algorithm to determine the number of clusters, identify instructors using active learning, and to understand the instructor and classroom characteristics in relation to the adoption of active-learning strategies. ResultsWe observed 125 science, technology, engineering, and mathematics (STEM) undergraduate courses at three University of California campuses using the Classroom Observation Protocol for Undergraduate STEM to examine active-learning strategies implemented in the classroom. Tenure-track education-focused faculty are more likely to teach with active-learning strategies compared to tenure-track research-focused faculty. Instructor and classroom characteristics that are also related to active learning include campus, discipline, and class size. The campus with initiatives and programs to support undergraduate STEM education is more likely to have instructors who adopt active-learning strategies. There is no difference in instructors in the Biological Sciences, Engineering, or Information and Computer Sciences disciplines who teach actively. However, instructors in the Physical Sciences are less likely to teach actively. Smaller class sizes also tend to have instructors who teach more actively. ConclusionsThe novel tenure-track education-focused faculty position within the University of California system represents a formal structure that results in higher adoption of active-learning strategies in undergraduate STEM education. Campus context and evolving expectations of the position (faculty rank) contribute to the symbols related to learning and teaching that correlate with differential implementation of active learning. 
    more » « less
  4. Spell, Rachelle (Ed.)
    Course-based undergraduate research experiences (CUREs) are an effective way to expose large numbers of students to authentic research, yet most laboratory courses still use traditional “cookbook” methods. While barriers to using CUREs have been captured postimplementation, little is known about the decision mindset before implementation or what features of CURE design may mitigate perceived barriers. Perception of an innovation (such as a CURE) influences the likelihood of its adoption, and diffusion of innovations theory posits that the decision to adopt is largely influenced by five perceived features of an innovation: relative advantage, compatibility, complexity, observability, and trialability. We conducted interviews with instructors considering using the Prevalence of Antibiotic Resistance in the Environment (PARE) project to assess their perceptions of CUREs and motivations for using PARE. Instructors viewed CUREs as having relative advantages over traditional methods; however, CUREs were also viewed as complex, with instructors citing multiple barriers. Instructors were motivated to use PARE because of its potential scientific impact and compatibility with their courses’ structures and resources. Instructors perceived PARE to have few barriers to implementation compared with other CUREs. Designing CUREs that address common instructor barriers and drivers could increase the rate of diffusion of CUREs. 
    more » « less
  5. Recent work has shown that student trust in their instructor is a key moderator of STEM student buy-in to evidence-based teaching practices (EBTs), enhancing positive student outcomes such as performance, engagement, and persistence. Although trust in instructor has been previously operationalized in related settings, a systematic classification of how undergraduate STEM students perceive trustworthiness in their instructors remains to be developed. Moreover, previous operationalizations impose a structure that often includes distinct domains, such as cognitive and affective trust, that have yet to be empirically tested in the undergraduate STEM context. MethodsTo address this gap, we engage in a multi-step qualitative approach to unify existing definitions of trust from the literature and analyze structured interviews with 57 students enrolled in undergraduate STEM classes who were asked to describe a trusted instructor. Through thematic analysis, we propose that characteristics of a trustworthy instructor can be classified into three domains. We then assess the validity of the three-domain model both qualitatively and quantitatively. First, we examine student responses to determine how traits from different domains are mentioned together. Second, we use a process-model approach to instrument design that leverages our qualitative interview codebook to develop a survey that measures student trust. We performed an exploratory factor analysis on survey responses to quantitatively test the construct validity of our proposed three-domain trust model. Results and discussionWe identified 28 instructor traits that students perceived as trustworthy, categorized into cognitive, affective, and relational domains. Within student responses, we found that there was a high degree of interconnectedness between traits in the cognitive and relational domains. When we assessed the construct validity of the three-factor model using survey responses, we found that a three-factor model did not adequately capture the underlying latent structure. Our findings align with recent calls to both closely examine long-held assumptions of trust dimensionality and to develop context-specific trust measurements. The work presented here can inform the development of a reliable measure of student trust within undergraduate STEM student environments and ultimately improve our understanding of how instructors can best leverage the effectiveness of EBTs for positive student learning outcomes. 
    more » « less