skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gyroscopic polynomials
Gyroscopic alignment gives rise to highly spatially anisotropic columnar structures that in combination with complex domain boundaries pose challenges for efficient numerical discretizations and computations. We define gyroscopic polynomials to be three-dimensional polynomials expressed in a coordinate system that conforms to rotational alignment. We remap the original domain with radius-dependent boundaries onto a right cylindrical or annular domain to create the computational domain in this coordinate system. We find the volume element expressed in gyroscopic coordinates leads naturally to a hierarchy of orthonormal bases. We build the bases out of Jacobi polynomials in the vertical and generalized Jacobi polynomials in the radial. Because these coordinates explicitly conform to flow structures found in rapidly rotating systems the bases represent fields with a relatively small number of modes. We develop the operator structure for one-dimensional semi-classical orthogonal polynomials as a building block for differential operators in the full three-dimensional cylindrical and annular domains. The differentiation operators of generalized Jacobi polynomials generate a sparse linear system for discretization of differential operators acting on the gyroscopic bases. This enables efficient simulation of systems with strong gyroscopic alignment.  more » « less
Award ID(s):
2009319
PAR ID:
10469802
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Computational Physics
Volume:
489
Issue:
C
ISSN:
0021-9991
Page Range / eLocation ID:
112268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    SUMMARY Within the field of seismic modelling in anisotropic media, dynamic ray tracing is a powerful technique for computation of amplitude and phase properties of the high-frequency Green’s function. Dynamic ray tracing is based on solving a system of Hamilton–Jacobi perturbation equations, which may be expressed in different 3-D coordinate systems. We consider two particular coordinate systems; a Cartesian coordinate system with a fixed origin and a curvilinear ray-centred coordinate system associated with a reference ray. For each system we form the corresponding 6-D phase spaces, which encapsulate six degrees of freedom in the variation of position and momentum. The formulation of (conventional) dynamic ray tracing in ray-centred coordinates is based on specific knowledge of the first-order transformation between Cartesian and ray-centred phase-space perturbations. Such transformation can also be used for defining initial conditions for dynamic ray tracing in Cartesian coordinates and for obtaining the coefficients involved in two-point traveltime extrapolation. As a step towards extending dynamic ray tracing in ray-centred coordinates to higher orders we establish detailed information about the higher-order properties of the transformation between the Cartesian and ray-centred phase-space perturbations. By numerical examples, we (1) visualize the validity limits of the ray-centred coordinate system, (2) demonstrate the transformation of higher-order derivatives of traveltime from Cartesian to ray-centred coordinates and (3) address the stability of function value and derivatives of volumetric parameters in a higher-order representation of the subsurface model. 
    more » « less
  2. Abstract We study a one-parameter family of self-adjoint normal operators for the x-ray transform on the closed Euclidean disk D , obtained by considering specific singularly weighted L 2 topologies. We first recover the well-known singular value decompositions in terms of orthogonal disk (or generalized Zernike) polynomials, then prove that each such realization is an isomorphism of C ∞ ( D ) . As corollaries: we give some range characterizations; we show how such choices of normal operators can be expressed as functions of two distinguished differential operators. We also show that the isomorphism property also holds on a class of constant-curvature, circularly symmetric simple surfaces. These results allow to design functional contexts where normal operators built out of the x-ray transform are provably invertible, in Fréchet and Hilbert spaces encoding specific boundary behavior. 
    more » « less
  3. null (Ed.)
    Abstract We describe a suite of fast algorithms for evaluating Jacobi polynomials, applying the corresponding discrete Sturm–Liouville eigentransforms and calculating Gauss–Jacobi quadrature rules. Our approach, which applies in the case in which both of the parameters $$\alpha $$ and $$\beta $$ in Jacobi’s differential equation are of magnitude less than $1/2$, is based on the well-known fact that in this regime Jacobi’s differential equation admits a nonoscillatory phase function that can be loosely approximated via an affine function over much of its domain. We illustrate this with several numerical experiments, the source code for which is publicly available. 
    more » « less
  4. As is well known, cluster transformations in cluster structures of geometric type are often modeled on determinant identities, such as short Plücker relations, Desnanot– Jacobi identities, and their generalizations. We present a construction that plays a similar role in a description of generalized cluster transformations and discuss its applications to generalized cluster structures in GL_n compatible with a certain subclass of Belavin–Drinfeld Poisson–Lie brackets, in the Drinfeld double of GL_n, and in spaces of periodic difference operators. 
    more » « less
  5. We review recent advances in algorithms for quadrature, transforms, differential equations and singular integral equations using orthogonal polynomials. Quadrature based on asymptotics has facilitated optimal complexity quadrature rules, allowing for efficient computation of quadrature rules with millions of nodes. Transforms based on rank structures in change-of-basis operators allow for quasi-optimal complexity, including in multivariate settings such as on triangles and for spherical harmonics. Ordinary and partial differential equations can be solved via sparse linear algebra when set up using orthogonal polynomials as a basis, provided that care is taken with the weights of orthogonality. A similar idea, together with low-rank approximation, gives an efficient method for solving singular integral equations. These techniques can be combined to produce high-performance codes for a wide range of problems that appear in applications. 
    more » « less