Base metal electrode (BME) multilayer ceramic capacitors (MLCCs) are widely used in aerospace, medical, military, and communication applications, emphasizing the need for high reliability. The ongoing advancements in BaTiO3-based MLCC technology have facilitated further miniaturization and improved capacitive volumetric density for both low and high voltage devices. However, concerns persist regarding infant mortality failures and long-term reliability under higher fields and temperatures. To address these concerns, a comprehensive understanding of the mechanisms underlying insulation resistance degradation is crucial. Furthermore, there is a need to develop effective screening procedures during MLCC production and improve the accuracy of mean time to failure (MTTF) predictions. This article reviews our findings on the effect of the burn-in test, a common quality control process, on the dynamics of oxygen vacancies within BME MLCCs. These findings reveal the burn-in test has a negative impact on the lifetime and reliability of BME MLCCS. Moreover, the limitations of existing lifetime prediction models for BME MLCCs are discussed, emphasizing the need for improved MTTF predictions by employing a physics-based machine learning model to overcome the existing models’ limitations. The article also discusses the new physical-based machine learning model that has been developed. While data limitations remain a challenge, the physics-based machine learning approach offers promising results for MTTF prediction in MLCCs, contributing to improved lifetime predictions. Furthermore, the article acknowledges the limitations of relying solely on MTTF to predict MLCCs’ lifetime and emphasizes the importance of developing comprehensive prediction models that predict the entire distribution of failures. 
                        more » 
                        « less   
                    
                            
                            Improved prediction for failure time of multilayer ceramic capacitors (MLCCs): A physics-based machine learning approach
                        
                    
    
            Multilayer ceramic capacitors (MLCC) play a vital role in electronic systems, and their reliability is of critical importance. The ongoing advancement in MLCC manufacturing has improved capacitive volumetric density for both low and high voltage devices; however, concerns about long-term stability under higher fields and temperatures are always a concern, which impact their reliability and lifespan. Consequently, predicting the mean time to failure (MTTF) for MLCCs remains a challenge due to the limitations of existing models. In this study, we develop a physics-based machine learning approach using the eXtreme Gradient Boosting method to predict the MTTF of X7R MLCCs under various temperature and voltage conditions. We employ a transfer learning framework to improve prediction accuracy for test conditions with limited data and to provide predictions for test conditions where no experimental data exists. We compare our model with the conventional Eyring model (EM) and, more recently, the tipping point model (TPM) in terms of accuracy and performance. Our results show that the machine learning model consistently outperforms both the EM and TPM, demonstrating superior accuracy and stability across different conditions. Our model also exhibits a reliable performance for untested voltage and temperature conditions, making it a promising approach for predicting MTTF in MLCCs. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10469951
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- APL Machine Learning
- Volume:
- 1
- Issue:
- 3
- ISSN:
- 2770-9019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Predicting the behavior of nanomaterials under various conditions presents a significant challenge due to their complex microstructures. While high-fidelity modeling techniques, such as molecular dynamics (MD) simulations, are effective, they are also computationally demanding. Machine learning (ML) models have opened new avenues for the rapid exploration of design spaces. In this work, we developed a deep learning framework based on a conditional generative adversarial network (cGAN) to predict the evolution of grain boundary (GB) networks in nanocrystalline materials under mechanical loads, incorporating both morphological and atomic details. We conducted MD simulations on nanocrystalline tungsten and used the resulting ground-truth data to train our cGAN model. We assessed the performance of our cGAN model by comparing it to a Convolutional Autoencoder (ConvAE) model and examining the impact of changes in geometric morphology and loading conditions on the model's performance. Our cGAN model demonstrated high accuracy in predicting GB network evolution under a variety of conditions. This developed framework shows potential for predicting various materials' behaviors across a wide range of nanomaterials.more » « less
- 
            Thermal ablation of materials is a complex phenomenon that involves physical and chemical processes for the thermal protection of systems. However, due to the extreme thermal conditions and moving boundaries, predicting temperature and heat flux at the ablative material is quite challenging. A physics-informed neural network is a promising technique for many such inverse problems, including the prediction of unsteady heat flux. However, traditional physics-informed machine learning algorithms struggle with heat flux predictions in thermal ablation problems due to moving boundary conditions and lack of temperature data in the inaccessible domain. This study presents a hybrid approach, where an artificial neural network (ANN) is used for the accessible domain of the material and a physics-based numerical solution (PNS) technique is used in the inaccessible domain of the material, to find heat flux at the ablative surface. Temperature data at the accessible sensor points are used to train the ANN model. The heat flux at the ablative boundary was iteratively obtained from the numerical solution of the energy equation in the inaccessible domain by matching the ANN-predicted temperature at the last accessible sensor point. Our results indicate that this hybrid methodology significantly outperforms traditional physics-informed machine learning techniques, achieving excellent accuracy in predicting the temperature profiles and heat fluxes under complex conditions for both constant and variable heat flux and properties. By addressing the limitations of conventional physics-informed machine learning methods, our approach provides a robust and reliable solution for modeling the intricate dynamics of ablative processes.more » « less
- 
            The melting temperature is important for materials design because of its relationship with thermal stability, synthesis, and processing conditions. Current empirical and computational melting point estimation techniques are limited in scope, computational feasibility, or interpretability. We report the development of a machine learning methodology for predicting melting temperatures of binary ionic solid materials. We evaluated different machine-learning models trained on a dataset of the melting points of 476 non-metallic crystalline binary compounds using materials embeddings constructed from elemental properties and density-functional theory calculations as model inputs. A direct supervised-learning approach yields a mean absolute error of around 180 K but suffers from low interpretability. We find that the fidelity of predictions can further be improved by introducing an additional unsupervised-learning step that first classifies the materials before the melting-point regression. Not only does this two-step model exhibit improved accuracy, but the approach also provides a level of interpretability with insights into feature importance and different types of melting that depend on the specific atomic bonding inside a material. Motivated by this finding, we used a symbolic learning approach to find interpretable physical models for the melting temperature, which recovered the best-performing features from both prior models and provided additional interpretability.more » « less
- 
            Abstract A catalytic surface should be stable under reaction conditions to be effective. However, it takes significant effort to screen many surfaces for their stability, as this requires intensive quantum chemical calculations. To more efficiently estimate stability, we provide a general and data-efficient machine learning (ML) approach to accurately and efficiently predict the surface energies of metal alloy surfaces. Our ML approach introduces an element-centered fingerprint (ECFP) which was used as a vector representation for fitting models for predicting surface formation energies. The ECFP is significantly more accurate than several existing feature sets when applied to dilute alloy surfaces and is competitive with existing feature sets when applied to bulk alloy surfaces or gas-phase molecules. Models using the ECFP as input can be quite general, as we created models with good accuracy over a broad set of bimetallic surfaces including most d-block metals, even with relatively small datasets. For example, using the ECFP, we developed a kernel ridge regression ML model which is able to predict the surface energies of alloys of diverse metal combinations with a mean absolute error of 0.017 eV atom−1. Combining this model with an existing model for predicting adsorption energies, we estimated segregation trends of 596 single-atom alloys (SAAs)with and without CO adsorbed on these surfaces. As a simple test of the approach, we identify specific cases where CO does not induce segregation in these SAAs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    