skip to main content


Title: Geometry and dynamics link form, function, and evolution of finch beaks
Significance

Understanding how development and evolution shape functional morphology is a basic question in biology. A paradigm of this is the finch’s beak that has adapted to different diets and behaviors over millions of years. We take a mathematical and physical perspective to quantify the nature of beak shape variations, how they emerge from changes to the development program of the birds, and their functional significance as a mechanical tool.

 
more » « less
Award ID(s):
2002103
NSF-PAR ID:
10470092
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
46
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Deciphering the genetic basis of vertebrate craniofacial variation is a longstanding biological problem with broad implications in evolution, development, and human pathology. One of the most stunning examples of craniofacial diversification is the adaptive radiation of birds, in which the beak serves essential roles in virtually every aspect of their life histories. The domestic pigeon (Columba livia) provides an exceptional opportunity to study the genetic underpinnings of craniofacial variation because of its unique balance of experimental accessibility and extraordinary phenotypic diversity within a single species. We used traditional and geometric morphometrics to quantify craniofacial variation in an F2laboratory cross derived from the straight‐beaked Pomeranian Pouter and curved‐beak Scandaroon pigeon breeds. Using a combination of genome‐wide quantitative trait locus scans and multi‐locus modeling, we identified a set of genetic loci associated with complex shape variation in the craniofacial skeleton, including beak shape, braincase shape, and mandible shape. Some of these loci control coordinated changes between different structures, while others explain variation in the size and shape of specific skull and jaw regions. We find that in domestic pigeons, a complex blend of both independent and coupled genetic effects underlie three‐dimensional craniofacial morphology.

     
    more » « less
  2. Abstract

    The termterroiris used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or “site”) is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η2 = 0.42) and body size (η2 = 0.43), with a smaller contribution for beak shape (η2 = 0.05) and body shape (η2 = 0.12), but still higher compared to year and site‐by‐year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft‐emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation.

     
    more » « less
  3. Abstract

    The upper and lower jaws of some wrasses (Eupercaria: Labridae) possess teeth that have been coalesced into a strong durable beak that they use to graze on hard coral skeletons, hard-shelled prey, and algae, allowing many of these species to function as important ecosystem engineers in their respective marine habitats. While the ecological impact of the beak is well understood, questions remain about its evolutionary history and the effects of this innovation on the downstream patterns of morphological evolution. Here we analyze 3D cranial shape data in a phylogenetic comparative framework and use paleoclimate modeling to reconstruct the evolution of the labrid beak across 205 species. We find that wrasses evolved beaks three times independently, once within odacines and twice within parrotfishes in the Pacific and Atlantic Oceans. We find an increase in the rate of shape evolution in the Scarus+Chlorurus+Hipposcarus (SCH) clade of parrotfishes likely driven by the evolution of the intramandibular joint. Paleoclimate modeling shows that the SCH clade of parrotfishes rapidly morphologically diversified during the middle Miocene. We hypothesize that possession of a beak in the SCH clade coupled with favorable environmental conditions allowed these species to rapidly morphologically diversify.

     
    more » « less
  4. Cortical computations emerge from the dynamics of neurons embedded in complex cortical circuits. Within these circuits, neuronal ensembles, which represent subnetworks with shared functional connectivity, emerge in an experience-dependent manner. Here we induced ensembles inex vivocortical circuits from mice of either sex by differentially activating subpopulations through chronic optogenetic stimulation. We observed a decrease in voltage correlation, and importantly a synaptic decoupling between the stimulated and nonstimulated populations. We also observed a decrease in firing rate during Up-states in the stimulated population. These ensemble-specific changes were accompanied by decreases in intrinsic excitability in the stimulated population, and a decrease in connectivity between stimulated and nonstimulated pyramidal neurons. By incorporating the empirically observed changes in intrinsic excitability and connectivity into a spiking neural network model, we were able to demonstrate that changes in both intrinsic excitability and connectivity accounted for the decreased firing rate, but only changes in connectivity accounted for the observed decorrelation. Our findings help ascertain the mechanisms underlying the ability of chronic patterned stimulation to create ensembles within cortical circuits and, importantly, show that while Up-states are a global network-wide phenomenon, functionally distinct ensembles can preserve their identity during Up-states through differential firing rates and correlations.

    SIGNIFICANCE STATEMENTThe connectivity and activity patterns of local cortical circuits are shaped by experience. This experience-dependent reorganization of cortical circuits is driven by complex interactions between different local learning rules, external input, and reciprocal feedback between many distinct brain areas. Here we used anex vivoapproach to demonstrate how simple forms of chronic external stimulation can shape local cortical circuits in terms of their correlated activity and functional connectivity. The absence of feedback between different brain areas and full control of external input allowed for a tractable system to study the underlying mechanisms and development of a computational model. Results show that differential stimulation of subpopulations of neurons significantly reshapes cortical circuits and forms subnetworks referred to as neuronal ensembles.

     
    more » « less
  5. Abstract

    Trabecular bone structure in adulthood is a product of a process of modelling during ontogeny and remodelling throughout life. Insight into ontogeny is essential to understand the functional significance of trabecular bone structural variation observed in adults. The complex shape and loading of the human calcaneus provides a natural experiment to test the relationship between trabecular morphology and locomotor development. We investigated the relationship between calcaneal trabecular bone structure and predicted changes in loading related to development of gait and body size in growing children. We sampled three main trabecular regions of the calcanei using micro‐computed tomography scans of 35 individuals aged between neonate to adult from the Norris Farms #36 site (1300 AD, USA) and from Cambridge (1200–1500 AD, UK). Trabecular properties were calculated in volumes of interest placed beneath the calcaneocuboid joint, plantar ligaments, and posterior talar facet. At birth, thin trabecular struts are arranged in a dense and relatively isotropic structure. Bone volume fraction strongly decreases in the first year of life, whereas anisotropy and mean trabecular thickness increase. Dorsal compressive trabecular bands appear around the onset of bipedal walking, although plantar tensile bands develop prior to predicted propulsive toe‐off. Bone volume fraction and anisotropy increase until the age of 8, when gait has largely matured. Connectivity density gradually reduces, whereas trabeculae gradually thicken from birth until adulthood. This study demonstrates that three different regions of the calcaneus develop into distinct adult morphologies through varying developmental trajectories. These results are similar to previous reports of ontogeny in human long bones and are suggestive of a relationship between the mechanical environment and trabecular bone architecture in the human calcaneus during growth. However, controlled experiments combined with more detailed biomechanical models of gait maturation are necessary to establish skeletal markers linking growth to loading. This has the potential to be a novel source of information for understanding loading levels, activity patterns, and perhaps life history in the fossil record.

     
    more » « less