- Award ID(s):
- 1750511
- PAR ID:
- 10470160
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of Chemical Information and Modeling
- Volume:
- 63
- Issue:
- 8
- ISSN:
- 1549-9596
- Page Range / eLocation ID:
- 2438 to 2444
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The Alchemical Transfer Method (ATM) is herein validated against the relative binding free energies of a diverse set of protein-ligand complexes. We employed a streamlined setup workflow, a bespoke force field, and the AToM-OpenMM software to compute the relative binding free energies (RBFE) of the benchmark set prepared by Schindler and collaborators at Merck KGaA. This benchmark set includes examples of standard small R-group ligand modifications as well as more challenging scenarios, such as large R-group changes, scaffold hopping, formal charge changes, and charge-shifting transformations. The novel coordinate perturbation scheme and a dual-topology approach of ATM address some of the challenges of single-topology alchemical relative binding free energy methods. Specifically, ATM eliminates the need for splitting electrostatic and Lennard-Jones interactions, atom mapping, defining ligand regions, and post-corrections for charge-changing perturbations. Thus, ATM is simpler and more broadly applicable than conventional alchemical methods, especially for scaffold-hopping and charge-changing transformations. Here, we performed well over 500 relative binding free energy calculations for eight protein targets and found that ATM achieves accuracy comparable to existing state-of-the-art methods, albeit with larger statistical fluctuations. We discuss insights into specific strengths and weaknesses of the ATM method that will inform future deployments. This study confirms that ATM is applicable as a production tool for relative binding free energy (RBFE) predictions across a wide range of perturbation types within a unified, open-source framework.more » « less
-
We present an analytical description of the Alchemical Transfer Method (ATM) for molecular binding using the Potential Distribution Theory (PDT) formalism. ATM models the binding free energy by mapping the bound and unbound states of the complex by translating the ligand coordinates. PDT relates the free energy and the probability densities of the perturbation energy along the alchemical path to the probability density at the initial state, which is the unbound state of the complex in the case of a binding process. Hence, the ATM probability density of the transfer energy at the unbound state is first related by a convolution operation of the probability densities for coupling the ligand to the solvent and coupling it to the solvated receptor—for which analytical descriptions are available—with parameters obtained from maximum likelihood analysis of data from double-decoupling alchemical calculations. PDT is then used to extend this analytical description along the alchemical transfer pathway. We tested the theory on the alchemical binding of five guests to the tetramethyl octa-acid host from the SAMPL8 benchmark set. In each case, the probability densities of the perturbation energy for transfer along the alchemical transfer pathway obtained from numerical calculations match those predicted from the theory and double-decoupling simulations. The work provides a solid theoretical foundation for alchemical transfer, offers physical insights on the form of the probability densities observed in alchemical transfer calculations, and confirms the conceptual and numerical equivalence between the alchemical transfer and double-decoupling processes.
-
Simonson, Thomas (Ed.)This chapter discusses the theory and application of physics-based free energy methods to estimate protein-peptide binding free energies. It presents a statistical mechanics formulation of molecular binding, which is then specialized in three methodologies: (i) alchemical absolute binding free energy estimation with implicit solvation, (ii) alchemical relative binding free energy estimation with explicit solvation, and (iii) potential of mean force binding free energy estimation. Case studies of protein-peptide binding application taken from the recent literature are discussed for each method.more » « less
-
null (Ed.)Protein–protein binding is fundamental to most biological processes. It is important to be able to use computation to accurately estimate the change in protein–protein binding free energy due to mutations in order to answer biological questions that would be experimentally challenging, laborious, or time-consuming. Although nonrigorous free-energy methods are faster, rigorous alchemical molecular dynamics-based methods are considerably more accurate and are becoming more feasible with the advancement of computer hardware and molecular simulation software. Even with sufficient computational resources, there are still major challenges to using alchemical free-energy methods for protein–protein complexes, such as generating hybrid structures and topologies, maintaining a neutral net charge of the system when there is a charge-changing mutation, and setting up the simulation. In the current study, we have used the pmx package to generate hybrid structures and topologies, and a double-system/single-box approach to maintain the net charge of the system. To test the approach, we predicted relative binding affinities for two protein–protein complexes using a nonequilibrium alchemical method based on the Crooks fluctuation theorem and compared the results with experimental values. The method correctly identified stabilizing from destabilizing mutations for a small protein–protein complex, and a larger, more challenging antibody complex. Strong correlations were obtained between predicted and experimental relative binding affinities for both protein–protein systems.more » « less
-
We apply the Alchemical Transfer Method (ATM) and a bespoke fixed partial charge force field to the SAMPL9 bCD host-guest binding free energy prediction challenge that comprises a combination of complexes formed between five phenothiazine guests and two cyclodextrin hosts. Multiple chemical forms, competing binding poses, and computational modeling challenges pose significant obstacles to obtaining reliable computational predictions for these systems. The phenothiazine guests exist in solution as racemic mixtures of enantiomers related by nitrogen inversions that bind the hosts in various binding poses, each requiring an individual free energy analysis. Due to the large size of the guests and the conformational reorganization of the hosts, which prevent a direct absolute binding free energy route, binding free energies are obtained by a series of absolute and relative binding alchemical steps for each chemical species in each binding pose. Metadynamics-accelerated conformational sampling was found to be necessary to address the poor convergence of some numerical estimates affected by conformational trapping. Despite these challenges, our blinded predictions quantitatively reproduced the experimental affinities for the beta-cyclodextrin host and, to a lesser extent, those with a methylated derivative. The work illustrates the challenges of obtaining reliable free energy data in in-silico drug design for even seemingly simple systems and introduces some of the technologies available to tackle them.more » « less