Rates and directions of crustal extension in a continental rift vary in time and space as the rift evolves, and these geologic records are often preserved along fault planes. Some fault-kinematic studies have been undertaken in the central to northern segments of the Rio Grande rift, but similar studies from the southern part of the Rio Grande rift of western Texas, USA, and northern Mexico are fewer. We present new fault-kinematic data from six locations in the southern Rio Grande rift of Trans-Pecos Texas, combined with U-Pb dating of calcite slickenlines, to constrain the directions and time scales of extension. All locations preserve NE-SW−oriented extension, and locations within the Sunken Block graben preserve a more complex kinematic history of multiple extension directions. Four U-Pb ages range from 30.1 ± 3.1 Ma to 13.7 ± 0.9 Ma. Combined with fault-kinematic data and assuming a constant stress regime between 30 Ma and 14 Ma, these data support the interpretation that earliest extension in the southern rift was oriented NE-SW, and extension rotated clockwise to E-W and NW-SE after 13.7 ± 0.9 Ma. Based on available data, this rotation was broadly coincident with rotation in the extension direction in the southern Española basin and in the Basin and Range Province. These differences suggest that extension in the Rio Grande rift responded to the evolving western boundary of the North American plate but included initial underlying driving forces that were supplanted by lateral forces as the transform margin lengthened. Additionally, geochronologic and kinematic data across the Sunken Block graben of the southern Rio Grande rift indicate that the locus of rifting concentrated with time toward the center of this basin; such structural narrowing has previously been demonstrated in the northern segment of the rift. This study provides a much-needed comparison between the southern and northern segments of the rift but highlights the need for more collection of combined kinematic and geochronologic data.
more »
« less
Rethinking the Huatabampo Archaeological Tradition of Northwest Mexico
The Huatabampo tradition was first defined by Gordon Ekholm, in 1938, and refers to those sites in the coastal plain in northern Sinaloa and southern Sonora lacking architecture but containing well-manufactured plain ceramics with complex shapes. Recent investigations in the region are helping to refine the chronology, geographical extension, cultural attributes, and ethnicity. With 20 radiocarbon dates, we can place this tradition as spanning from 200 BC to AD 1450. The maximum geographical extension ranges from the Middle Rio Yaqui in the north to the Rio San Lorenzo in Sinaloa. The associated sites of this complex are represented by dispersed houses, indicative of ranchería-type settlements, funerary mounds, shell middens, and petroglyph sites. At about AD 1150, Aztatlán pottery and other commodities from southern Sinaloa were incorporated mostly as mortuary offerings. We also provide evidence that the Huatabampo archaeological tradition is a local culture representing the occupation of the Cahitan-speaking groups, Yoremem/Mayos and Yoemem/Yaquis, of the coastal plain.
more »
« less
- Award ID(s):
- 1724445
- PAR ID:
- 10470250
- Publisher / Repository:
- Taylor and Francis
- Date Published:
- Journal Name:
- KIVA
- ISSN:
- 0023-1940
- Page Range / eLocation ID:
- 1 to 27
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reflection profiles generated using PKPdf as a virtual source show laterally continuous reflections from structures at depths less than 1 km to roughly 200 km beneath the southern Appalachian orogen and Atlantic coastal plain. Arrivals interpreted as reflections from the Moho increase in time from ~10 s beneath the coastal plain to 17.4 s (~57 km) beneath the Blue Ridge Mountains, providing additional evidence that the southern Appalachians are in rough isostatic equilibrium. Reflections at 32–36 s (120–135 km) are consistent with the depth to the base of the lithosphere found in recent inversions of Ps arrivals and surface waves. Alternatively, these and later reflections at times up to 58 s (~224 km) may be due to layering associated with drag‐induced flow in the asthenosphere, suggesting largely horizontal rather than vertical flow for depths less than 225 km beneath the Georgia coastal plain.more » « less
-
This is the field measured snow depth data using an automatic snow depth probe (magnaprobe, Snow-Hydro LCC) in April 19 - May 7, 2022 in North Slope, Alaska. The data are in csv format (comma delimited text format with geographical coordinate, WGS 84, and UTM zone 5). The goal of this research project is to quantify the role of thermokarst lake drainage and drained thermokarst lake basin (DTLB) evolution in the arctic system. The joint research team (University of Alaska, Fairbanks, University of Wyoming, and Michigan Technological University) spent several days based in Utqiagvik (Western Coastal Plain) and rest of days in Teshekpuk Lake (Central Coastal Plain). During the travel, manual snow survey was conducted using the mangaprobe to quantify the snowdrift around thermokarst lakes and other land features as complementary to the geophysical and remote sensed snowpack characterizations.more » « less
-
null (Ed.)Abstract. Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB) from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves) has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 %) where the annual average SMB during the most recent decade (2001–2010) is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation.more » « less
-
Abstract The cooling effect of the ocean on the Southern California coastal zone is investigated using a high‐resolution (4‐km) gridded surface meteorological data set (gridMET) of daily maximum temperature (Tmax), with focus on summer mean conditions, taken as the July–August–September (JAS) average. An empirical orthogonal function analysis reveals a coastal mode of JAS temperature covariability, distinct from a more energetic inland mode, that captures Tmax averaged across the Southern California coastal plain. The coastal mode temperature correlates significantly with, and has similar amplitude to, regional sea surface temperature (SST). High (low) summer land and sea surface temperatures, as well as inversion layer temperature differences, are associated with decreases (increases) of northerly coastal wind speeds and coastal cloudiness. The number of extreme heat days on land increases as regional SST increases (4.3 days °C−1), with heat wave days 10 times more likely during peak warm versus cool coastal mode years. The coastal zone was notably warmer and heat wave days peaked during the well documented marine heat wave events of 2014/15 and 2018 off Southern California. The marine variability associated with the coastal mode also has strong expression off the Baja California peninsula, presumably due to strong covarying winds in that area. As in previous studies, higher ocean temperatures are attributed to weaker summer winds, with associated reductions in ocean surface heat loss, coastal upwelling, and cloudiness.more » « less
An official website of the United States government

