skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Waveform accuracy and systematic uncertainties in current gravitational wave observations
The post-Newtonian formalism plays an integral role in the models used to extract information from gravitational wave data, but models that incorporate this formalism are inherently approximations. Disagreement between an approximate model and nature will produce mismodeling biases in the parameters inferred from data, introducing systematic error. We here carry out a proof-of- principle study of such systematic error by considering signals produced by quasi-circular, inspiraling black hole binaries through an injection and recovery campaign. In particular, we study how un- known, but calibrated, higher-order post-Newtonian corrections to the gravitational wave phase impact systematic error in recovered parameters. As a first study, we produce injected data of non-spinning binaries as detected by a current, second-generation network of ground-based observatories and recover them with models of varying PN order in the phase. We find that the truncation of higher order (>3.5) post-Newtonian corrections to the phase can produce significant systematic error even at signal-to-noise ratios of current detector networks. We propose a method to mitigate systematic error by marginalizing over our ignorance in the waveform through the inclusion of higher-order post-Newtonian coefficients as new model parameters. We show that this method can reduce systematic error greatly at the cost of increasing statistical error.  more » « less
Award ID(s):
1912053 2207970
PAR ID:
10470804
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Phys.Rev.D 108 (2023) 4, 044018
Date Published:
Journal Name:
Physical Review D
Volume:
108
Issue:
4
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Merging supermassive black hole binaries produce low-frequency gravitational waves, which pulsar timing experiments are searching for. Much of the current theory is developed within the plane-wave formalism, and here we develop the more general Fresnel formalism. We show that Fresnel corrections to gravitational wave timing residual models allow novel measurements to be made, such as direct measurements of the source distance from the timing residual phase and frequency, as well as direct measurements of chirp mass from a monochromatic source. Probing the Fresnel corrections in these models will require future pulsar timing arrays with more distant pulsars across our Galaxy (ideally at the distance of the Magellanic Clouds), timed with precisions less than 100 ns, with distance uncertainties reduced to the order of the gravitational wavelength. We find that sources with chirp mass of order 109 M⊙ and orbital frequency ω0 > 10 nHz are good candidates for probing Fresnel corrections. With these conditions met, the measured source distance uncertainty can be made less than 10 per cent of the distance to the source for sources out to ∼100 Mpc, source sky localization can be reduced to sub-arcminute precision, and source volume localization can be made to less than 1 Mpc3 for sources out to 1-Gpc distances. 
    more » « less
  2. Abstract Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strong-field tests of gravity, requiring accurate theoretical modeling of the expected signals in extensions of general relativity. In this paper we model the gravitational wave emission of inspiralling binaries in scalar Gauss–Bonnet gravity theories. Going beyond the weak-coupling approximation, we derive the gravitational waveform to relative first post-Newtonian order beyond the quadrupole approximation and calculate new contributions from nonlinear curvature terms. We also compute the scalar waveform to relative 0.5PN order beyond the leading −0.5PN order terms. We quantify the effect of these terms and provide ready-to-implement gravitational wave and scalar waveforms as well as the Fourier domain phase for quasi-circular binaries. We also perform a parameter space study, which indicates that the values of black hole scalar charges play a crucial role in the detectability of deviation from general relativity. We also compare the scalar waveforms to numerical relativity simulations to assess the impact of the relativistic corrections to the scalar radiation. Our results provide important foundations for future precision tests of gravity. 
    more » « less
  3. Abstract A new hierarchy of lasting gravitational-wave effects (the higher memory effects) was recently identified in asymptotically flat spacetimes, with the better-known displacement, spin, and center-of-mass memory effects included as the lowest two orders in the set of these effects. These gravitational-wave observables are determined by a set of temporal moments of the news tensor, which describes gravitational radiation from an isolated source. The moments of the news can be expressed in terms of changes in charge-like expressions and integrals over retarded time of flux-like terms, some of which vanish in the absence of radiation. In this paper, we compute expressions for the flux-like contributions to the moments of the news in terms of a set of multipoles that characterize the gravitational-wave strain. We also identify a part of the strain that gives rise to these moments of the news. In the context of post-Newtonian theory, we show that the strain related to the moments of the news is responsible for the many nonlinear, instantaneous terms and ‘memory’ terms that appear in the post-Newtonian expressions for the radiative multipole moments of the strain. We also apply our results to compute the leading post-Newtonian expressions for the moments of the news and the corresponding strains that are generated during the inspiral of compact binary sources. These results provide a new viewpoint on the waveforms computed from the multipolar post-Minkowski formalism, and they could be used to assess the detection prospects of this new class of higher memory effects. 
    more » « less
  4. Abstract Many astronomical surveys are limited by the brightness of the sources, and gravitational-wave searches are no exception. The detectability of gravitational waves from merging binaries is affected by the mass and spin of the constituent compact objects. To perform unbiased inference on the distribution of compact binaries, it is necessary to account for this selection effect, which is known as Malmquist bias. Since systematic error from selection effects grows with the number of events, it will be increasingly important over the coming years to accurately estimate the observational selection function for gravitational-wave astronomy. We employ density estimation methods to accurately and efficiently compute the compact binary coalescence selection function. We introduce a simple pre-processing method, which significantly reduces the complexity of the required machine-learning models. We demonstrate that our method has smaller statistical errors at comparable computational cost than the method currently most widely used allowing us to probe narrower distributions of spin magnitudes. The currently used method leaves 10%–50% of the interesting black hole spin models inaccessible; our new method can probe >99% of the models and has a lower uncertainty for >80% of the models. 
    more » « less
  5. Abstract The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations. 
    more » « less