Rapid, efficient and accurate nucleic acid molecule detection is important in the screening of diseases and pathogens, yet remains a limiting factor at point of care (POC) treatment. Microfluidic systems are characterized by fast, integrated, miniaturized features which provide an effective platform for qualitative and quantitative detection of nucleic acid molecules. The nucleic acid detection process mainly includes sample preparation and target molecule amplification. Given the advancements in theoretical research and technological innovations to date, nucleic acid extraction and amplification integrated with microfluidic systems has advanced rapidly. The primary goal of this review is to outline current approaches used for nucleic acid detection in the context of microfluidic systems. The secondary goal is to identify new approaches that will help shape future trends at the intersection of nucleic acid detection and microfluidics, particularly with regard to increasing disease and pathogen detection for improved diagnosis and treatment.
more »
« less
Sample–to-answer sensing technologies for nucleic acid preparation and detection in the field
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
more »
« less
- Award ID(s):
- 1654010
- PAR ID:
- 10470883
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- SLAS Technology
- Volume:
- 28
- Issue:
- 5
- ISSN:
- 2472-6303
- Page Range / eLocation ID:
- 302 to 323
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nucleic acid detection plays a crucial role in various applications, including disease diagnostics, research development, food safety, and environmental health monitoring. A rapid, point‐of‐care (POC) nucleic acid test can greatly benefit healthcare system by providing timely diagnosis for effective treatment and patient management, as well as supporting diseases surveillance for emerging pandemic diseases. Recent advancements in nucleic acids technology have led to rapid assays for single‐stranded nucleic acids that can be integrated into simple and miniaturized platforms for ease of use. In this review, the study focuses on the developments in isothermal amplification, nucleic acid hybridization circuits, various enzyme‐based signal reporting mechanisms, and detection platforms that show promise for POC testing. The study also evaluates critical technical breakthroughs to identify the advantages and disadvantages of these methods in various applications.more » « less
-
MicroRNAs (miRNAs) are small, non-coding RNAs that play critical roles in regulating gene expression and are implicated in various diseases, including cancer, cardiovascular disorders, and neurodegenerative diseases. Due to their diagnostic and prognostic significance, the development of sensitive, specific, and reliable detection methods for miRNAs has become a research priority. Nucleic-acid-based approaches offer unique advantages, including high specificity, the potential for amplification, and adaptability to various detection platforms. This review discusses recent advances in nucleic-acid-based strategies for miRNA detection, highlighting techniques such as hybridization-based methods, amplification strategies, CRISPR-based approaches, novel NV-diamond sensors, as well as their integration into point-of-care devices.more » « less
-
Nucleic acid tests are key tools for the detection and diagnosis of many diseases. In many cases, the amplification of the nucleic acids is required to reach a detectable level. To make nucleic acid amplification tests more accessible to a point-of-care (POC) setting, isothermal amplification can be performed with a simple heating source. Although these tests are being performed in bulk reactions, the quantification is not as accurate as it would be with digital amplification. Here, we introduce the use of the vibrating sharp-tip capillary for a simple and portable system for tunable on-demand droplet generation. Because of the large range of droplet sizes possible and the tunability of the vibrating sharp-tip capillary, a high dynamic range (~2 to 6000 copies/µL) digital droplet loop-mediated isothermal amplification (ddLAMP) system has been developed. It was also noted that by changing the type of capillary on the vibrating sharp-tip capillary, the same mechanism can be used for simple and portable DNA fragmentation. With the incorporation of these elements, the present work paves the way for achieving digital nucleic acid tests in a POC setting with limited resources.more » « less
-
NA (Ed.)Abstract Molecular diagnostics for crop diseases can guide the precise application of pesticides, thereby reducing pesticide usage while improving crop yield, but tools are lacking. Here, we report an in-field molecular diagnostic tool that uses a cheap colorimetric paper and a smartphone, allowing multiplexed, low-cost, rapid detection of crop pathogens. Rapid nucleic acid amplification-free detection of pathogenic RNA is achieved by combining toehold-mediated strand displacement with a metal ion-mediated urease catalysis reaction. We demonstrate multiplexed detection of six wheat pathogenic fungi and an early detection of wheat stripe rust. When coupled with a microneedle for rapid nucleic acid extraction and a smartphone app for results analysis, the sample-to-result test can be completed in ~10 min in the field. Importantly, by detecting fungal RNA and mutations, the approach allows to distinguish viable and dead pathogens and to sensitively identify mutation-carrying fungicide-resistant isolates, providing fundamental information for precision crop disease management.more » « less
An official website of the United States government

