AlN Schottky barrier diodes with low ideality factor (<1.2), low differential ON-resistance (<0.6 mΩ cm2), high current density (>5 kA cm−2), and high breakdown voltage (680 V) are reported. The device structure consisted of a two-layer, quasi-vertical design with a lightly doped AlN drift layer and a highly doped Al0.75Ga0.25N ohmic contact layer grown on AlN substrates. A combination of simulation, current–voltage measurements, and impedance spectroscopy analysis revealed that the AlN/AlGaN interface introduces a parasitic electron barrier due to the conduction band offset between the two materials. This barrier was found to limit the forward current in fabricated diodes. Further, we show that introducing a compositionally-graded layer between the AlN and the AlGaN reduces the interfacial barrier and increases the forward current density of fabricated diodes by a factor of 104. 
                        more » 
                        « less   
                    
                            
                            Low voltage drop AlGaN UV-A laser structures with transparent tunnel junctions and optimized quantum wells
                        
                    
    
            Abstract This paper presents the design, material growth and fabrication of AlGaN laser structures grown by plasma-assisted molecular beam epitaxy. Considering hole transport to be the major challenge, our ultraviolet-A diode laser structures have a compositionally graded transparent tunnel junction, resulting in superior hole injection and a low contact resistance. By optimizing active region thickness, a five-fold improvement in photoluminescence intensity is obtained compared to that of our own non-optimized test structures. The electrical and optical characteristics of processed devices demonstrate only spontaneous emission with a peak wavelength at 354 nm. The devices operate up to a continuous-wave current density of 11.1 kA cm−2at room temperature, which is the highest reported for laser structures grown on AlGaN templates. Additionally, they exhibit a record-low voltage drop of 8.5 V to achieve this current density. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2034140
- PAR ID:
- 10470997
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics D: Applied Physics
- Volume:
- 57
- Issue:
- 3
- ISSN:
- 0022-3727
- Format(s):
- Medium: X Size: Article No. 035105
- Size(s):
- Article No. 035105
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 1018 cm−3were achieved in bulk doping of Mg in Al0.6Ga0.4N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 1019cm−3) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of VN-related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN.more » « less
- 
            Abstract In this work, an alternative scheme to estimate the resistivity and ionization energy of Al-rich p-AlGaN epitaxial films is developed using two large-area ohmic contacts. Accordingly, the resistivities measured using current–voltage measurements were observed to corroborate the Hall measurements in the Van der Pauw configuration. A free hole concentration of ∼1.5 × 10 17 cm −3 and low ionization energy of ∼65 meV in Mg-doped Al 0.7 Ga 0.3 N films is demonstrated. Nearly an order of magnitude lower hydrogen concentration than Mg in the as-grown AlGaN films is thought to reduce the Mg passivation and enable higher hole concentrations in Al-rich p-AlGaN films, compared to p-GaN films. The alternate methodology proposed in this work is expected to provide a simpler pathway to evaluate the electrical characteristics of Al-rich p-AlGaN films for future III-nitride ultraviolet light emitters.more » « less
- 
            Molecular beam epitaxy-grown GaN/AlGaN-based active regions were optimized by varying quantum-well widths to yield increased photoluminescence intensity at UV-A wavelengths. The optimized gain medium was then used in electrically-pumped laser structures with transparent tunnel junctions.more » « less
- 
            Room-temperature, pulsed-operation lasing of 8.5 μm-emitting InP-based quantum cascade lasers (QCLs), with low threshold-current density and watt-level output power, is demonstrated from structures grown on (001) GaAs substrates by metal-organic chemical vapor deposition. Prior to growing the laser structure, which contains a 35-stage In 0.53 Ga 0.47 As/In 0.52 Al 0.48 As lattice-matched active-core region, a ∼2 μm-thick nearly fully relaxed InP buffer with strained 1.6 nm-thick InAs quantum-dot-like dislocation-filter layers was grown. A smooth terminal buffer-layer surface, with roughness as low as 0.4 nm on a 10 × 10 μm 2 scale, was obtained, while the estimated threading-dislocation density was in the mid-range × 10 8 cm −2 . A series of measurements, on lasers grown on InP metamorphic buffer layers (MBLs) and on native InP substrates, were performed for understanding the impact of the buffer-layer's surface roughness, residual strain, and threading-dislocation density on unipolar devices such as QCLs. As-cleaved devices, grown on InP MBLs, were fabricated as 25 μm × 3 mm deep-etched ridge guides with lateral current injection. The results are pulsed maximum output power of 1.95 W/facet and a low threshold-current density of 1.86 kA/cm 2 at 293 K. These values are comparable to those obtained from devices grown on InP: 2.09 W/facet and 2.42 kA/cm 2 . This demonstrates the relative insensitivity of the device-performance metrics on high residual threading-dislocation density, and high-performance InP-based QCLs emitting near 8 μm can be achieved on lattice-mismatched substrates.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
