Tropical Storm Eta impacted the coast of west-central Florida from 11 November to 12 November 2020 and generated high waves over elevated water levels for over 20 hours. A total of 148 beach and nearshore profiles, spaced about 300 m (984 ft) apart, were surveyed one to two weeks before and one to eight days after the storm to examine the beach changes along four barrier islands, including Sand Key, Treasure Island, Long Key, and Mullet Key. The high storm waves superimposed on elevated water level reached the toe of dunes or seawalls and caused dune erosion and overwash at various places. Throughout most of the coast, the dune, dry beach, and nearshore area was eroded and most of the sediment was deposited on the seaward slope of the nearshore bar, resulting in a roughly conserved sand volume above closure depth. The longshore variation of beach-profile volume loss demonstrates an overall southward decreasing trend, mainly due to a southward decreasing nearshore wave height as controlled by offshore bathymetry and shoreline configurations. The Storm Erosion Index (SEI) developed by Miller and Livermont (2008) captured the longshore variation of beach-profile volume loss reasonably well. The longshore variation of breaking wave height is the dominant factor controlling the longshore changes of SEI and beach erosion. Temporal variation of water level also played a significant role, while beach berm elevation was a minor factor. Although wider beaches tended to experience more volume loss from TS Eta due to the availability of sediment, they were effective in protecting the back beach and dune area from erosion. On the other hand, smaller profile-volume loss from narrow beach did not necessarily relate to less dune/ structure damage. The opposite is often true. Accurate evaluation of a storm’s severity in terms of erosion potential would benefit beach management especially under the circumstance of increasing storm activities due to climate change.
more »
« less
Geomorphic Response of a Coastal Berm to Storm Surge and the Importance of Sheet Flow Dynamics
Abstract During a storm, as the beach profile is impacted by increased wave forcing and rapidly changing water levels, sand berms may help mitigate erosion of the backshore. However, the mechanics of berm morphodynamics have not been fully described. In this study, 26 trials were conducted in a large wave flume to explore the response of a near‐prototype berm to scaled storm conditions. Sensors were used to quantify hydrodynamics, sheet flow dynamics, and berm evolution. Results indicate that berm overtopping and offshore sediment transport were key processes causing berm erosion. During the morphological evolution of the beach profile, two sand bars were formed offshore that attenuated subsequent wave energy. The landward extent of that energy was confined to the seaward foreshore, inhibiting inundation of the backshore. Net offshore‐directed transport was dominant when infragravity motions increased in the swash zone. Conversely, the influence of incident‐band motions on sediment transport was relatively greater in the inner‐surf zone. Near‐bed flow velocities and sheet flow layer thicknesses were larger in the swash zone than in the inner‐surf zone. This paper also provides a valuable analysis between morphology‐estimated total sediment transport rates and rates derived from in situ measurements. Sheet flow dynamics dominated foreshore cross‐shore sediment processes, constituting the largest portion of the total sediment transport load throughout the berm erosion.
more »
« less
- Award ID(s):
- 2103713
- PAR ID:
- 10471016
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 128
- Issue:
- 10
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Erosive beach scarps influence beach vulnerability, yet their formation remains challenging to predict. In this study, a 1:2.5 scale laboratory experiment was used to study the subsurface hydrodynamics of a beach dune during an erosive event. Pressure and moisture sensors buried within the dune were used both to monitor the water table and to examine vertical pressure gradients in the upper 0.3 m of sand as the slope of the upper beach developed into a scarp. Concurrently, a line‐scan lidar tracked swash bores and monitored erosion and accretion patterns along a single cross‐shore transect throughout the experiment. As wave conditions intensified, a discontinuity in the slope of the dune formed; the discontinuity grew steeper and progressed landward at the same rate as theR2%runup extent until it was a fully formed scarp with a vertical face. Within the upper 0.15 m of the partially saturated sand, upward pore pressure gradients were detected during backwash, influencing the effective weight of sand and potentially contributing to beachface erosion. The magnitude and frequency of the upward pressure gradients increased with deeper swash depths and with frequency of wave interaction, and decreased with depth into the sand. A simple conceptual model for scarp formation is proposed that incorporates observations of upward‐directed pressure gradients from this study while providing a reference for future studies seeking to integrate additional swash zone sediment transport processes that may impact scarp development.more » « less
-
Abstract A 3D large eddy simulation coupled with a free surface tracking scheme was used to simulate cross‐shore hydrodynamics as observed in a large wave flume experiment. The primary objective was to enhance the understanding of wave‐backwash interactions and the implications for observed morphodynamics. Two simulation cases were carried out to elucidate key processes of wave‐backwash interactions across two distinct stages: berm erosion and sandbar formation, during the early portion of a modeled storm. The major difference between the two cases was the bathymetry: one featuring a berm without a sandbar (Case I), and the other, featuring a sandbar without a berm (Case II) at similar water depth. Good agreement (overall Willmott's index of agreement greater than 0.8) between simulations and measured data in free surface elevation, wave spectrum, and flow velocities validated the model skill. The findings indicated that the bottom shear stress, represented by the Shields parameter, was significant in both cases, potentially contributing substantial sediment transport. Notably, the occurrence of intense wave‐backwash interactions were more frequent in the absence of a sandbar. These intense wave‐backwash interactions resulted in a pronounced horizontal pressure gradient, quantified by high Sleath parameters, exceeding the criteria for momentary bed failure. Additionally, a more vigorous turbulence‐bed interaction, characterized by near‐bed turbulent kinetic energy, was observed in the case lacking a sandbar, potentially augmenting sediment suspension. These insights are pivotal in understanding the mechanisms underlying berm erosion and how sandbar formation serves to protect further beach erosion.more » « less
-
null (Ed.)Wave forcing from hurricanes, nor’easters, and energetic storms can cause erosion of the berm and beach face resulting in increased vulnerability of dunes and coastal infrastructure. LIDAR or other surveying techniques have quantified post-event morphology, but there is a lack of in situ hydrodynamic and morphodynamic measurements during extreme storm events. Two field studies were conducted in March 2018 and April 2019 at Bethany Beach, Delaware, where in situ hydrodynamic and morphodynamic measurements were made during a nor’easter (Nor’easter Riley) and an energetic storm (Easter Eve Storm). An array of sensors to measure water velocity, water depth, water elevation and bed elevation were mounted to scaffold pipes and deployed in a single cross-shore transect. Water velocity was measured using an electro-magnetic current meter while water and bed elevations were measured using an acoustic distance meter along with an algorithm to differentiate between the water and bed during swash processes. GPS profiles of the beach face were measured during every day-time low tide throughout the storm events. Both accretion and erosion were measured at different cross-shore positions and at different times during the storm events. Morphodynamic change along the back-beach was found to be related to berm erosion, suggesting an important morphologic feedback mechanism. Accumulated wave energy and wave energy flux per unit area between Nor’easter Riley and a recent mid-Atlantic hurricane (Hurricane Dorian) were calculated and compared. Coastal Observations: JALBTCX/NCMP emergency-response airborne Lidar coastal mapping & quick response data products for 2016/2017/2018 hurricane impact assessmentsmore » « less
-
The interactions between the atmosphere, ocean, and beach in the swash zone are dynamic, influencing water flux and solute exchange across the land-sea interface. However, the integrated role of these interactions in governing transport processes within the swash zone remains unexplored. This study employs groundwater simulations to examine the combined effects of waves and evaporation on subsurface flow and salinity dynamics in a shallow beach environment. Our simulations reveal that wave motion generates a saline plume beneath the swash zone, where evaporation induces hypersalinity near the sand surface. This leads to the formation of a hypersaline plume beneath the swash zone during periods of wave recession, which extends vertically downward, driven by the resulting vertical density gradients. This hypersaline plume moves landward and down the beachface due to wave-induced seawater infiltration and is subsequently diluted by the surrounding saline groundwater. Furthermore, swash motion increases near-surface moisture, leading to an elevated evaporation rate, with dynamic fluctuations in both moisture and evaporation rate due to high-frequency surface inundation caused by individual waves. Notably, the highest evaporation rates on the swash zone surface do not always correspond to the greatest elevations of salt concentration within the swash zone. This is because optimal moisture is also required – neither too low to impede evaporation nor too high to dilute accumulated salt near the surface. These insights are crucial for enhancing our understanding of coastal groundwater flow, biogeochemical conditions, and the subsequent nutrient cycling and contaminant transport in coastal zones.more » « less
An official website of the United States government
