skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The bright frontiers of microbial metabolic optogenetics
In recent years, light-responsive systems from the field of optogenetics have been applied to several areas of metabolic engineering with remarkable success. By taking advantage of light's high tunability, reversibility, and orthogonality to host endogenous processes, optogenetic systems have enabled unprecedented dynamical controls of microbial fermentations for chemical production, metabolic flux analysis, and population compositions in co-cultures. In this article, we share our opinions on the current state of this new field of metabolic optogenetics.We make the case that it will continue to impact metabolic engineering in increasingly new directions, with the potential to challenge existing paradigms for metabolic pathway and strain optimization as well as bioreactor operation.  more » « less
Award ID(s):
1751840
PAR ID:
10471197
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Current Opinion in Chemical Biology
Volume:
71
Issue:
C
ISSN:
1367-5931
Page Range / eLocation ID:
102207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plants produce a broad variety of specialized metabolites with distinct biological activities and potential applications. Despite this potential, most biosynthetic pathways governing specialized metabolite production remain largely unresolved across the plant kingdom. The rapid advancement of genetics and biochemical tools has enhanced our ability to identify plant specialized metabolic pathways. Further advancements in transgenic technology and synthetic biology approaches have extended this to a desire to design new pathways or move existing pathways into new systems to address long-running difficulties in crop systems. This includes improving abiotic and biotic stress resistance, boosting nutritional content, etc. In this review, we assess the potential and limitations for (1) identifying specialized metabolic pathways in plants with multi-omics tools and (2) using these enzymes in synthetic biology or crop engineering. The goal of these topics is to highlight areas of research that may need further investment to enhance the successful application of synthetic biology for exploiting the myriad of specialized metabolic pathways. 
    more » « less
  2. null (Ed.)
    ABSTRACT The mitochondria, often referred to as the powerhouse of the cell, offer a unique physicochemical environment enriched with a distinct set of enzymes, metabolites and cofactors ready to be exploited for metabolic engineering. In this review, we discuss how the mitochondrion has been engineered in the traditional sense of metabolic engineering or completely bypassed for chemical production. We then describe the more recent approach of harnessing the mitochondria to compartmentalize engineered metabolic pathways, including for the production of alcohols, terpenoids, sterols, organic acids and other valuable products. We explain the different mechanisms by which mitochondrial compartmentalization benefits engineered metabolic pathways to boost chemical production. Finally, we discuss the key challenges that need to be overcome to expand the applicability of mitochondrial engineering and reach the full potential of this emerging field. 
    more » « less
  3. Growing environmental concerns and the urgency to address climate change have increased demand for the development of sustainable alternatives to fossil-derived fuels and chemicals. Microbial systems, possessing inherent biosynthetic capabilities, present a promising approach for achieving this goal. This review discusses the coupling of systems and synthetic biology, to enable the elucidation and manipulation of microbial phenotypes for the production of chemicals that can substitute for petroleum-derived counterparts and contribute to advancing green biotechnology. The integration of artificial intelligence with metabolic engineering to facilitate precise and data-driven design of biosynthetic pathways is also discussed, along with the identification of current limitations and proposition of strategies for optimizing of biosystems, thereby propelling the field of chemical biology towards sustainable chemical production. 
    more » « less
  4. ABSTRACT Fermentation-based chemical production strategies provide a feasible route for the rapid, safe, and sustainable production of a wide variety of important chemical products, ranging from fuels to pharmaceuticals. These strategies have yet to find wide industrial utilization due to their inability to economically compete with traditional extraction and chemical production methods. Here, we engineer for the first time the complex microbial biosynthesis of an anthocyanin plant natural product, starting from sugar. This was accomplished through the development of a synthetic, 4-strain Escherichia coli polyculture collectively expressing 15 exogenous or modified pathway enzymes from diverse plants and other microbes. This synthetic consortium-based approach enables the functional expression and connection of lengthy pathways while effectively managing the accompanying metabolic burden. The de novo production of specific anthocyanin molecules, such as calistephin, has been an elusive metabolic engineering target for over a decade. The utilization of our polyculture strategy affords milligram-per-liter production titers. This study also lays the groundwork for significant advances in strain and process design toward the development of cost-competitive biochemical production hosts through nontraditional methodologies. IMPORTANCE To efficiently express active extensive recombinant pathways with high flux in microbial hosts requires careful balance and allocation of metabolic resources such as ATP, reducing equivalents, and malonyl coenzyme A (malonyl-CoA), as well as various other pathway-dependent cofactors and precursors. To address this issue, we report the design, characterization, and implementation of the first synthetic 4-strain polyculture. Division of the overexpression of 15 enzymes and transcription factors over 4 independent strain modules allowed for the division of metabolic burden and for independent strain optimization for module-specific metabolite needs. This study represents the most complex synthetic consortia constructed to date for metabolic engineering applications and provides a new paradigm in metabolic engineering for the reconstitution of extensive metabolic pathways in nonnative hosts. 
    more » « less
  5. Abstract 13C‐Metabolic Flux Analysis (13C‐MFA) and Flux Balance Analysis (FBA) are widely used to investigate the operation of biochemical networks in both biological and biotechnological research. Both methods use metabolic reaction network models of metabolism operating at steady state so that reaction rates (fluxes) and the levels of metabolic intermediates are constrained to be invariant. They provide estimated (MFA) or predicted (FBA) values of the fluxes through the network in vivo, which cannot be measured directly. These fluxes can shed light on basic biology and have been successfully used to inform metabolic engineering strategies. Several approaches have been taken to test the reliability of estimates and predictions from constraint‐based methods and to compare alternative model architectures. Despite advances in other areas of the statistical evaluation of metabolic models, such as the quantification of flux estimate uncertainty, validation and model selection methods have been underappreciated and underexplored. We review the history and state‐of‐the‐art in constraint‐based metabolic model validation and model selection. Applications and limitations of the χ2‐test of goodness‐of‐fit, the most widely used quantitative validation and selection approach in 13C‐MFA, are discussed, and complementary and alternative forms of validation and selection are proposed. A combined model validation and selection framework for 13C‐MFA incorporating metabolite pool size information that leverages new developments in the field is presented and advocated for. Finally, we discuss how adopting robust validation and selection procedures can enhance confidence in constraint‐based modeling as a whole and ultimately facilitate more widespread use of FBA in biotechnology. 
    more » « less