skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interfacial Photopolymerization: A Method for Light-Based Printing of Thermoplastics
Ultraviolet (UV) printing of photopolymers is a widely adopted manufacturing method because of its high resolution and throughput. However, available printable photopolymers are typically thermosets, resulting in challenges in postprocessing and recycling of printed structures. Here, we present a new process called interfacial photopolymerization (IPP) which enables photopolymerization printing of linear chain polymers. In IPP, a polymer film is formed at the interface between two immiscible liquids, one containing a chain-growth monomer and the other containing a photoinitiator. We demonstrate the integration of IPP in a proof-of-concept projection system for printing of polyacrylonitrile (PAN) films and rudimentary multi-layer shapes . IPP shows in-plane and out-of-plane resolutions comparable to conventional photoprinting methods. Cohesive PAN films with number-average molecular weights greater than 15 kg mol–1 are obtained, and to our knowledge this is the first report of photopolymerization printing of PAN. A macrokinetics model of IPP is developed to elucidate the transport and reaction rates involved and evaluate how reaction parameters affect film thickness and print speed. Last, demonstration of IPP in a multilayer scheme suggests its suitabiliy for three-dimensional printing of linear-chain polymers.  more » « less
Award ID(s):
2114343
PAR ID:
10471208
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
Volume:
15
Issue:
25
ISSN:
1944-8244
Page Range / eLocation ID:
31009 to 31019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-healing polymers often have a trade-off between healing efficiency and mechanical stiffness. Stiff polymers that sacrifice their chain mobility are slow to repair upon mechanical failure. We herein report adaptable polymer films with dynamically moisture-controlled mechanical and optical properties, therefore having tunable self-healing efficiency. The design of the polymer film is based on the coordination of europium (Eu) with dipicolylamine (DPA)-containing random copolymers of poly( n -butyl acrylate- co -2-hydroxy-3-dipicolylamino methacrylate) (P( n BA- co -GMADPA)). The Eu–DPA complexation results in the formation of mechanically robust polymer films. The coordination of Eu–DPA has proven to be moisture-switchable given the preferential coordination of lanthanide metals to O over N, using nuclear magnetic resonance and fluorescence spectroscopy. Water competing with DPA to bind Eu 3+ ions can weaken the cross-linking networks formed by Eu–DPA coordination, leading to the increase of chain mobility. The in situ dynamic mechanical analysis and ex situ rheological studies confirm that the viscofluid and the elastic solid states of Eu-polymers are switchable by moisture. Water speeds up the self-healing of the polymer film by roughly 100 times; while it can be removed after healing to recover the original mechanical stiffness of polymers. 
    more » « less
  2. Abstract The preparation of thin films of nanostructured functional materials is a critical step in a diverse array of applications ranging from photonics to separation science. New thin‐film fabrication methods are sought to harness the emerging potential of self‐assembled nanostructured materials as next‐generation membranes. Here, the authors show that nanometer‐scale control over the thickness of self‐assembled mesophases can be enacted by directional photopolymerization in the presence of highly photo‐attenuating molecular species. Metrology reveals average film growth rates below ten nanometers per second, indicating that high‐resolution fabrication is possible with this approach. The trends in experimental data are reproduced well in numerical simulations of mean‐field frontal photopolymerization modeled in a highly photo‐attenuating and photo‐bleaching medium. These simulation results connect the experimentally observed nanometer‐scale control of film growth to the strong photo‐attenuating nature of the mesophase, which originates from its high‐aromatic‐ring content. Water permeability measurements conducted on the fabricated thin films show the expected linear scaling of permeability with film thickness. Film permeabilities compare favorably with current state‐of‐the‐art nanofiltration and reverse osmosis membranes, suggesting that the current approach may be utilized to prepare new nanoporous membranes for such applications. 
    more » « less
  3. Incorporation of nanoparticles into polymer blend films can lead to a synergistic combination of properties and functionalities. Adding a large concentration of nanoparticles into a polymer blend matrix via conventional melting or solution blending techniques, however, is challenging due to the tendency of particles to aggregate. Herein, we report a straightforward approach to generate polymer blend/nanoparticle ternary composite films with extremely high loadings of nanoparticles based on monomer-driven infiltration of polymer and photopolymerization. The fabrication process consists of three steps: (1) preparing a bilayer with a nanoparticle (NP) layer atop a polymer layer, (2) annealing of the bilayer with a vapour mixture of a monomer and a photoinitiator, which undergoes capillary condensation and imparts mobility to the polymer layer and (3) exposing this film to UV light to induce photopolymerization of the monomer. The monomer used in this process is chemically different from the repeat unit of the polymer in the bilayer and is a good solvent for the polymer. The second step leads to the infiltration of the plasticized polymer, and the third step results in a blend of two polymers in the interstices of the nanoparticle layer. By varying the thickness ratio of the polymer and nanoparticle layers in the initial bilayers and changing the UV exposure duration, the volume fraction of the two polymers in the composite films can be adjusted. This versatile approach enables the design and engineering of a new class of nanocomposite films that contain a nanoscale-blend of two polymers in the interstices of a nanoparticle film, which could have combinations of unique mechanical and transport properties desirable for advanced applications such as membrane separations, conductive composite films and solar cells. Moreover, these polymer blend-filled nanoparticle films could serve as model systems to study the effect of confinement on the miscibility and morphology of polymer blends. 
    more » « less
  4. Abstract In this report, a high‐performance all‐polymer organic photodetector that is sensitive to linearly polarized light throughout the visible spectrum is demonstrated. The active layer is a bulk heterojunction composed of an electron donor polymer PBnDT‐FTAZ and acceptor polymer P(NDI2OD‐T2) that have complementary spectral absorption resulting in efficient detection from 350 to 800 nm. The blend film exhibits good ductility with the ability to accommodate large strains of over 60% without fracture. This allows the film to undergo large uniaxial strain resulting in in‐plane alignment of both polymers making the film optically anisotropic and intrinsically polarization sensitive. The films are characterized by UV–vis spectroscopy and grazing incidence wide‐angle X‐ray scattering showing that both polymers have similar in‐plane backbone alignment and maintain packing order after being strained. The films are integrated into devices and characterized under linear polarized light. The strain‐oriented detectors have maximum photocurrent anisotropies of 1.4 under transverse polarized light while maintaining peak responsivities of 0.21 A W−1and a 3 dB cutoff frequency of ≈1 kHz. The demonstrated performance is comparable to the current state of the art all‐polymer photodetectors with the added capability of polarization sensitivity enabling new application opportunities. 
    more » « less
  5. Abstract Donor–acceptor (D–A) type semiconducting polymers have shown great potential for the application of deformable and stretchable electronics in recent decades. However, due to their heterogeneous structure with rigid backbones and long solubilizing side chains, the fundamental understanding of their molecular picture upon mechanical deformation still lacks investigation. Here, the molecular orientation of diketopyrrolopyrrole (DPP)‐based D–A polymer thin films is probed under tensile deformation via both experimental measurements and molecular modeling. The detailed morphological analysis demonstrates highly aligned polymer crystallites upon deformation, while the degree of backbone alignment is limited within the crystalline domain. Besides, the aromatic ring on polymer backbones rotates parallel to the strain direction despite the relatively low overall chain anisotropy. The effect of side‐chain length on the DPP chain alignment is observed to be less noticeable. These observations are distinct from traditional linear‐chain semicrystalline polymers like polyethylene due to distinct characteristics of backbone/side‐chain combination and the crystallographic characteristics in DPP polymers. Furthermore, a stable and isotropic charge carrier mobility is obtained from fabricated organic field‐effect transistors. This study deconvolutes the alignment of different components within the thin‐film microstructure and highlights that crystallite rotation and chain slippage are the primary deformation mechanisms for semiconducting polymers. 
    more » « less