skip to main content


This content will become publicly available on August 1, 2024

Title: Teeth Mold Point Cloud Completion Via Data Augmentation and Hybrid RL-GAN
Abstract

Teeth scans are essential for many applications in orthodontics, where the teeth structures are virtualized to facilitate the design and fabrication of the prosthetic piece. Nevertheless, due to the limitations caused by factors such as viewing angles, occlusions, and sensor resolution, the 3D scanned point clouds (PCs) could be noisy or incomplete. Hence, there is a critical need to enhance the quality of the teeth PCs to ensure a suitable dental treatment. Toward this end, we propose a systematic framework including a two-step data augmentation (DA) technique to augment the limited teeth PCs and a hybrid deep learning (DL) method to complete the incomplete PCs. For the two-step DA, we first mirror and combine the PCs based on the bilateral symmetry of the human teeth and then augment the PCs based on an iterative generative adversarial network (GAN). Two filters are designed to avoid the outlier and duplicated PCs during the DA. For the hybrid DL, we first use a deep autoencoder (AE) to represent the PCs. Then, we propose a hybrid approach that selects the best completion to the teeth PCs from AE and a reinforcement learning (RL) agent-controlled GAN. Ablation study is performed to analyze each component’s contribution. We compared our method with other benchmark methods including point cloud network (PCN), cascaded refinement network (CRN), and variational relational point completion network (VRC-Net), and demonstrated that the proposed framework is suitable for completing teeth PCs with good accuracy over different scenarios.

 
more » « less
Award ID(s):
2134409
NSF-PAR ID:
10471390
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
Volume:
23
Issue:
4
ISSN:
1530-9827
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While radio frequency (RF) based respiration monitoring for at- home health screening is receiving increasing attention, robustness remains an open challenge. In recent work, deep learning (DL) methods have been demonstrated effective in dealing with non- linear issues from multi-path interference to motion disturbance, thus improving the accuracy of RF-based respiration monitoring. However, such DL methods usually require large amounts of train- ing data with intensive manual labeling efforts, and frequently not openly available. We propose RF-Q for robust RF-based respiration monitoring, using self-supervised learning with an autoencoder (AE) neural network to quantify the quality of respiratory signal based on the residual between the original and reconstructed sig- nals. We demonstrate that, by simply quantifying the signal quality with AE for weighted estimation we can boost the end-to-end (e2e) respiration monitoring accuracy by an improvement ratio of 2.75 compared to a baseline. 
    more » « less
  2. Deep learning (DL) algorithms have achieved significantly high performance in object detection tasks. At the same time, augmented reality (AR) techniques are transforming the ways that we work and connect with people. With the increasing popularity of online and hybrid learning, we propose a new framework for improving students’ learning experiences with electrical engineering lab equipment by incorporating the abovementioned technologies. The DL powered automatic object detection component integrated into the AR application is designed to recognize equipment such as multimeter, oscilloscope, wave generator, and power supply. A deep neural network model, namely MobileNet-SSD v2, is implemented for equipment detection using TensorFlow’s object detection API. When a piece of equipment is detected, the corresponding AR-based tutorial will be displayed on the screen. The mean average precision (mAP) of the developed equipment detection model is 81.4%, while the average recall of the model is 85.3%. Furthermore, to demonstrate practical application of the proposed framework, we develop a multimeter tutorial where virtual models are superimposed on real multimeters. The tutorial includes images and web links as well to help users learn more effectively. The Unity3D game engine is used as the primary development tool for this tutorial to integrate DL and AR frameworks and create immersive scenarios. The proposed framework can be a useful foundation for AR and machine-learning-based frameworks for industrial and educational training. 
    more » « less
  3. Abstract

    Embedding nodes of a large network into a metric (e.g., Euclidean) space has become an area of active research in statistical machine learning, which has found applications in natural and social sciences. Generally, a representation of a network object is learned in a Euclidean geometry and is then used for subsequent tasks regarding the nodes and/or edges of the network, such as community detection, node classification and link prediction. Network embedding algorithms have been proposed in multiple disciplines, often with domain‐specific notations and details. In addition, different measures and tools have been adopted to evaluate and compare the methods proposed under different settings, often dependent of the downstream tasks. As a result, it is challenging to study these algorithms in the literature systematically. Motivated by the recently proposed PCS framework for Veridical Data Science, we propose a framework for network embedding algorithms and discuss how the principles ofpredictability,computability, andstability(PCS) apply in this context. The utilization of this framework in network embedding holds the potential to motivate and point to new directions for future research.

     
    more » « less
  4. Since its selection as the method of the year in 2013, single-cell technologies have become mature enough to provide answers to complex research questions. With the growth of single-cell profiling technologies, there has also been a significant increase in data collected from single-cell profilings, resulting in computational challenges to process these massive and complicated datasets. To address these challenges, deep learning (DL) is positioned as a competitive alternative for single-cell analyses besides the traditional machine learning approaches. Here, we survey a total of 25 DL algorithms and their applicability for a specific step in the single cell RNA-seq processing pipeline. Specifically, we establish a unified mathematical representation of variational autoencoder, autoencoder, generative adversarial network and supervised DL models, compare the training strategies and loss functions for these models, and relate the loss functions of these models to specific objectives of the data processing step. Such a presentation will allow readers to choose suitable algorithms for their particular objective at each step in the pipeline. We envision that this survey will serve as an important information portal for learning the application of DL for scRNA-seq analysis and inspire innovative uses of DL to address a broader range of new challenges in emerging multi-omics and spatial single-cell sequencing. 
    more » « less
  5. Abstract

    Protein fold recognition is a critical step toward protein structure and function prediction, aiming at providing the most likely fold type of the query protein. In recent years, the development of deep learning (DL) technique has led to massive advances in this important field, and accordingly, the sensitivity of protein fold recognition has been dramatically improved. Most DL-based methods take an intermediate bottleneck layer as the feature representation of proteins with new fold types. However, this strategy is indirect, inefficient and conditional on the hypothesis that the bottleneck layer’s representation is assumed as a good representation of proteins with new fold types. To address the above problem, in this work, we develop a new computational framework by combining triplet network and ensemble DL. We first train a DL-based model, termed FoldNet, which employs triplet loss to train the deep convolutional network. FoldNet directly optimizes the protein fold embedding itself, making the proteins with the same fold types be closer to each other than those with different fold types in the new protein embedding space. Subsequently, using the trained FoldNet, we implement a new residue–residue contact-assisted predictor, termed FoldTR, which improves protein fold recognition. Furthermore, we propose a new ensemble DL method, termed FSD_XGBoost, which combines protein fold embedding with the other two discriminative fold-specific features extracted by two DL-based methods SSAfold and DeepFR. The Top 1 sensitivity of FSD_XGBoost increases to 74.8% at the fold level, which is ~9% higher than that of the state-of-the-art method. Together, the results suggest that fold-specific features extracted by different DL methods complement with each other, and their combination can further improve fold recognition at the fold level. The implemented web server of FoldTR and benchmark datasets are publicly available at http://csbio.njust.edu.cn/bioinf/foldtr/.

     
    more » « less