skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microvascular assessment of fascio-cutaneous flaps by ultrasound: A large animal study
Objectives:Blood perfusion quality of a flap is the main prognostic factor for success. Microvascular evaluation remains mostly inaccessible. We aimed to evaluate the microflow imaging mode, MV-Flow, in assessing flap microvascularization in a pig model of the fascio-cutaneous flap. Methods:On five pigs, bilateral saphenous fascio-cutaneous flaps were procured on the superficial femoral vessels. A conventional ultrasound evaluation in pulsed Doppler and color Doppler was conducted on the ten flaps allowing for the calculation of the saphenous artery flow rate. The MV-Flow mode was then applied: for qualitative analysis, with identification of saphenous artery collaterals; then quantitative, with repeated measurements of the Vascularity Index (VI), percentage of pixels where flow is detected relative to the total ultrasound view area. The measurements were then repeated after increasing arterial flow by clamping the distal femoral artery. Results:The MV-Flow mode allowed a better follow-up of the saphenous artery’s collaterals and detected microflows not seen with the color Doppler. The VI was correlated to the saphenous artery flow rate (Spearman rho of 0.64;p= 0.002) and allowed to monitor the flap perfusion variations. Conclusion:Ultrasound imaging of microvascularization by MV-Flow mode and its quantification by VI provides valuable information in evaluating the microvascularization of flaps.  more » « less
Award ID(s):
1941543
PAR ID:
10471493
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
NSF
Date Published:
Journal Name:
Frontiers in Physiology
Volume:
13
ISSN:
1664-042X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine perfusion has developed rapidly since its first use in solid organ transplantation. Likewise, reconstructive surgery has kept pace, and ex vivo perfusion appears as a new trend in vascularized composite allotransplants preservation. In autologous reconstruction, fasciocutaneous flaps are now the gold standard due to their low morbidity (muscle sparing) and favorable functional and cosmetic results. However, failures still occasionally arise due to difficulties encountered with the vessels during free flap transfer. The development of machine perfusion procedures would make it possible to temporarily substitute or even avoid microsurgical anastomoses in certain complex cases. We performed oxygenated acellular sub-normothermic perfusions of fasciocutaneous flaps for 24 and 48 h in a porcine model and compared continuous and intermittent perfusion regimens. The monitored metrics included vascular resistance, edema, arteriovenous oxygen gas differentials, and metabolic parameters. A final histological assessment was performed. Porcine flaps which underwent successful oxygenated perfusion showed minimal or no signs of cell necrosis at the end of the perfusion. Intermittent perfusion allowed overall better results to be obtained at 24 h and extended perfusion duration. This work provides a strong foundation for further research and could lead to new and reliable reconstructive techniques. 
    more » « less
  2. Covert feathers are a set of self-actuating, passively deployable feathers located on the upper surfaces of wings that augment lift at post-stall angles of attack. Due to these benefits, the study of covert-inspired passive flow control devices is becoming an increasingly active area of research. In this work, we numerically investigate the aerodynamic benefits of torsionally mounting five covert-inspired flaps on the upper surface of a NACA0012 airfoil. Two-dimensional high-fidelity simulations of the flow past the airfoil–flap system at low Re=1000 and a high angle of attack of 20∘ were performed. A parametric study was conducted by varying the flap moment of inertia and torsional hinge stiffness to characterize the aerodynamic performance of this system. Lift improvements as high as 25% were attained. Two regimes of flap dynamics were identified that provided considerable aerodynamic benefits. A detailed investigation of the flow physics of both these regimes was conducted to understand the physical mechanisms by which the passively deployed flaps augmented the lift of the airfoil. In both regimes, the flap was found to act as a barrier in preventing the upstream propagation of reverse flow due to flow separation and trailing edge vortex. The torsional spring and flap inertia yielded additional flap dynamics that further modulated the surrounding flow and associated performance metrics. We discuss some of these fluid–structure interaction effects in this article. 
    more » « less
  3. Abstract Trans-arterial chemoembolization (TACE) is an important yet variably effective treatment for management of hepatic malignancies. Lack of response can be in part due to inability to assess treatment adequacy in real-time. Gold-standard contrast enhanced computed tomography and magnetic resonance imaging, although effective, suffer from treatment-induced artifacts that prevent early treatment evaluation. Non-contrast ultrasound is a potential solution but has historically been ineffective at detecting treatment response. Here, we propose non-contrast ultrasound with recent perfusion-focused advancements as a tool for immediate evaluation of TACE. We demonstrate initial feasibility in an 11-subject pilot study. Treatment-induced changes in tumor perfusion are detected best when combining adaptive demodulation (AD) and singular value decomposition (SVD) techniques. Using a 0.5 s (300-sample) ensemble size, AD + SVD resulted in a 7.42 dB median decrease in tumor power after TACE compared to only a 0.06 dB median decrease with conventional methods. 
    more » « less
  4. null (Ed.)
    Objective: To elucidate the mechanics of scalp rotation flaps through 3D imaging and computational modeling. Excessive tension near a wound or sutured region can delay wound healing or trigger complications. Measuring tension in the operating room is challenging, instead, noninvasive methods to improve surgical planning are needed. Design: Multi-view stereo allows creation of 3D patient-specific geometries based on a set of photographs. The patient-specific 3D geometry is imported into a finite element (FE) platform to perform a virtual procedure. The simulation is compared with the clinical outcome. Additional simulations quantify the effect of individual flap parameters on the resulting tension distribution. Participants: Rotation flaps for reconstruction of scalp defects following melanoma resection in 2 cases are presented. Rotation flaps were designed without preoperative FE preparation. Main Outcome Measure: Tension distribution over the operated region. Results: The tension from FE shows peaks at the base and distal ends of the scalp rotation flap. The predicted geometry from the simulation aligns with postoperative photographs. Simulations exploring the flap design parameters show variation in the tension. Lower tensions were achieved when rotation was oriented with respect to skin tension lines (horizontal tissue fibers) and smaller rotation angles. Conclusions: Tension distribution following rotation of scalp flaps can be predicted through personalized FE simulations. Flaps can be designed to reduce tension using FE, which may greatly improve the reliability of scalp reconstruction in craniofacial surgery, critical in complex cases when scalp reconstruction is essential for coverage of hardware, implants, and/or bone graft. 
    more » « less
  5. Objective:To develop a novel technique for localizing and reconstructing the greater palatine artery (GPA) using three-dimensional (3D) technology. Methods:A miniaturized intraoral ultrasound transducer was used to imaging landmarks including the GPA, gingival margin (GM), and palatal masticatory mucosa (PMM). A 5-mm-thick solid hydrogel couplant was integrated to replace traditional ultrasound gel and avoid bubbles when moving the transducer. Results:A panorama image provided the relative localization of landmarks including the GPA, PMM, and hard palate. Short- and long-axis imaging of GPA was performed in five subjects including 3D mapping of GPA branches and surrounding tissues in a volume of 10 mm × 8 mm × 10 mm. Full-mouth Doppler imaging was also demonstrated on both the dorsal and ventral tongue as well as buccal mucosa and sublingual region on two subjects. Conclusions:This study can measure the vertical distance from the GM to the GPA and depth from PMM to GPA and visualize the GPA localization in a 3D manner, which is critical to evaluate the available volume of palatal donor tissues and avoid sectioning of GPA during surgical harvesting of the tissues. Finally, the transducer’s small size facilitates full-mouth Doppler imaging with the potential to improve the assessment, diagnosis, and management of oral mucosa. 
    more » « less