skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Origin of Solar Hemispherical Helicity Rules: Simulations of the Rise of Magnetic Flux Concentrations in a Background Field
Abstract Solar active regions and sunspots are believed to be formed by the emergence of strong toroidal magnetic flux from the solar interior. Modeling of such events has focused on the dynamics of compact magnetic entities, colloquially known as “flux tubes,” often considered to be isolated magnetic structures embedded in an otherwise field-free environment. In this paper, we show that relaxing such idealized assumptions can lead to surprisingly different dynamics. We consider the rise of tube-likeflux concentrationsembedded in a large-scale volume-filling horizontal field in an initially quiescent adiabatically stratified compressible fluid. In a previous letter, we revealed the unexpected major result that concentrations whose twist is aligned with the background field at the bottom of the tube are more likely to rise than the opposite orientation (for certain values of parameters). This bias leads to a selection rule which, when applied to solar dynamics, is in agreement with the observations known as the solar hemispheric helicity rule(s) (SHHR). Here, we examine this selection mechanism in more detail than was possible in the earlier letter. We explore the dependence on parameters via simulations, delineating the Selective Rise Regime, where the bias operates. We provide a theoretical model to predict and explain the simulation dynamics. Furthermore, we create synthetic helicity maps from Monte Carlo simulations to mimic the SHHR observations, and to demonstrate that our mechanism explains the observed scatter in the rule, as well as its variation over the solar cycle.  more » « less
Award ID(s):
1908010
PAR ID:
10471565
Author(s) / Creator(s):
;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
909
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
72
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Inspired by observations of sunspots embedded in active regions, it is often assumed that large-scale, strong magnetic flux emerges from the Sun’s deep interior in the form of arched, cylindrical structures, colloquially known as flux tubes. Here, we continue to examine the different dynamics encountered when these structures are considered as concentrations in a volume-filling magnetic field rather than as isolated entities in a field-free background. Via 2.5D numerical simulations, we consider the buoyant rise of magnetic flux concentrations from a radiative zone through an overshooting convection zone that self-consistently (via magnetic pumping) arranges a volume-filling large-scale background field. This work extends earlier papers that considered the evolution of such structures in a purely adiabatic stratification with an assumed form of the background field. This earlier work established the existence of a bias that created an increased likelihood of the successful rise for magnetic structures with one (relative) orientation of twist and a decreased likelihood for the other. When applied to the solar context, this bias is commensurate with the solar hemispherical helicity rules (SHHRs). This paper establishes the robustness of this selection mechanism in a model incorporating a more realistic background state, consisting of overshooting convection and a turbulently pumped mean magnetic field. Ultimately, convection only weakly influences the selection mechanism, since it is enacted at the initiation of the rise, at the edge of the overshoot zone. Convection does however add another layer of statistical fluctuations to the bias, which we investigate in order to explain variations in the SHHRs. 
    more » « less
  2. Abstract Minifilaments are widespread small-scale structures in the solar atmosphere. To better understand their formation and eruption mechanisms, we investigate the entire life of a sigmoidal minifilament located below a large quiescent filament observed by Big Bear Solar Observatory/Goode Solar Telescope on 2015 August 3. The Hαstructure initially appears as a group of arched threads, then transforms into two J-shaped arcades, and finally forms a sigmoidal shape. Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly observations in 171 Å show that two coronal jets occur around the southern footpoint of the minifilament before the minifilament eruption. The minifilament eruption starts from the southern footpoint, then interacts with the overlying filament and fails. The aforementioned observational changes correspond to three episodes of flux cancellations observed by SDO/Helioseismic and Magnetic Imager. Unlike previous studies, the flux cancellation occurs between the polarity where the southern footpoint of the minifilament is rooted and an external polarity. We construct two magnetic field models before the eruption using the flux rope insertion method and find a hyperbolic flux tube above the flux cancellation site. The observation and modeling results suggest that the eruption is triggered by the external magnetic reconnection between the core field of the minifilament and the external fields due to flux cancellations. This study reveals a new triggering mechanism for minifilament eruptions and a new relationship between minifilament eruptions and coronal jets. 
    more » « less
  3. null (Ed.)
    Aims. We study the relative helicity of active region (AR) NOAA 12673 during a ten-hour time interval centered around a preceding X2.2 flare (SOL2017-09-06T08:57) and also including an eruptive X9.3 flare that occurred three hours later (SOL2017-09-06T11:53). In particular, we aim for a reliable estimate of the normalized self-helicity of the current-carrying magnetic field, the so-called helicity ratio, | H J |/| H 𝒱 |, a promising candidate to quantity the eruptive potential of solar ARs. Methods. Using Solar Dynamics Observatory Helioseismic and Magnetic Imager vector magnetic field data as an input, we employ nonlinear force-free (NLFF) coronal magnetic field models using an optimization approach. The corresponding relative helicity, and related quantities, are computed using a finite-volume method. From multiple time series of NLFF models based on different choices of free model parameters, we are able to assess the spread of | H J |/| H 𝒱 |, and to estimate its uncertainty. Results. In comparison to earlier works, which identified the non-solenoidal contribution to the total magnetic energy, E div / E , as selection criterion regarding the required solenoidal quality of magnetic field models for subsequent relative helicity analysis, we propose to use in addition the non-solenoidal contribution to the free magnetic energy, | E mix |/ E J , s . As a recipe for a reliable estimate of the relative magnetic helicity (and related quantities), we recommend to employ multiple NLFF models based on different combinations of free model parameters, to retain only those that exhibit smallest values of both E div / E and | E mix |/ E J , s at a certain time instant, to subsequently compute mean estimates, and to use the spread of the individually contributing values as an indication for the uncertainty. 
    more » « less
  4. Using non-linear force free field (NLFFF) extrapolation, 3D magnetic fields were modeled from the 12-min cadence Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI) photospheric vector magnetograms, spanning a time period of 1 hour before through 1 hour after the start of 18 X-class and 12 M-class solar flares. Several magnetic field parameters were calculated from the modeled fields directly, as well as from the power spectrum of surface maps generated by summing the fields along the vertical axis, for two different regions: areas with photospheric |Bz|≥ 300 G (active region—AR) and areas above the photosphere with the magnitude of the non-potential field (BNP) greater than three standard deviations above | B N P | ̄ of the AR field and either the unsigned twist number |Tw| ≥ 1 turn or the shear angle Ψ ≥ 80° (non-potential region—NPR). Superposed epoch (SPE) plots of the magnetic field parameters were analyzed to investigate the evolution of the 3D solar field during the solar flare events and discern consistent trends across all solar flare events in the dataset, as well as across subsets of flare events categorized by their magnetic and sunspot classifications. The relationship between different flare properties and the magnetic field parameters was quantitatively described by the Spearman ranking correlation coefficient, rs. The parameters that showed the most consistent and discernable trends among the flare events, particularly for the hour leading up to the eruption, were the total unsigned fluxϕ), free magnetic energy (EFree), total unsigned magnetic twist (τTot), and total unsigned free magnetic twist (ρTot). Strong (|rs| ∈ [0.6, 0.8)) to very strong (|rs| ∈ [0.8, 1.0]) correlations were found between the magnetic field parameters and the following flare properties: peak X-ray flux, duration, rise time, decay time, impulsiveness, and integrated flux; the strongest correlation coefficient calculated for each flare property was 0.62, 0.85, 0.73, 0.82, −0.81, and 0.82, respectively. 
    more » « less
  5. Abstract The magnetic topology of erupting regions on the Sun is a key factor in the energy buildup and release, and the subsequent evolution of flares and coronal mass ejections (CMEs). The presence/absence of null points and separatrices dictates whether and where current sheets form and magnetic reconnection occurs. Numerical simulations show that energy buildup and release via reconnection in the simplest configuration with a null, the embedded bipole, is a universal mechanism for solar eruptions. Here we demonstrate that a magnetic topology with nested bipoles and two nulls can account for more complex dynamics, such as failed eruptions and CME–jet interactions. We investigate the stalled eruption of a nested configuration on 2013 July 13 in NOAA Active Region 11791, in which a small bipole is embedded within a large transequatorial pseudo-streamer containing a null. In the studied event, the inner active region erupted, ejecting a small flux rope behind a shock accompanied by a flare; the flux rope then reconnected with pseudo-streamer flux and, rather than escaping intact, mainly distorted the pseudo-streamer null into a current sheet. EUV and coronagraph images revealed a weak shock and a faint collimated outflow from the pseudo-streamer. We analyzed Solar Dynamics Observatory and Solar TErrestrial RElations Observatory observations and compared the inferred magnetic evolution and dynamics with three-dimensional magnetohydrodynamics simulations of a simplified representation of this nested fan-spine system. The results suggest that the difference between breakout reconnection at the inner null and at the outer null naturally accounts for the observed weak jet and stalled ejection. We discuss the general implications of our results for failed eruptions. 
    more » « less