Abstract Deep generative models have demonstrated effectiveness in learning compact and expressive design representations that significantly improve geometric design optimization. However, these models do not consider the uncertainty introduced by manufacturing or fabrication. Past work that quantifies such uncertainty often makes simplifying assumptions on geometric variations, while the “real-world”, “free-form” uncertainty and its impact on design performance are difficult to quantify due to the high dimensionality. To address this issue, we propose a Generative Adversarial Network-based Design under Uncertainty Framework (GAN-DUF), which contains a deep generative model that simultaneously learns a compact representation of nominal (ideal) designs and the conditional distribution of fabricated designs given any nominal design. This opens up new possibilities of 1) building a universal uncertainty quantification model compatible with both shape and topological designs, 2) modeling free-form geometric uncertainties without the need to make any assumptions on the distribution of geometric variability, and 3) allowing fast prediction of uncertainties for new nominal designs. We can combine the proposed deep generative model with robust design optimization or reliability-based design optimization for design under uncertainty. We demonstrated the framework on two real-world engineering design examples and showed its capability of finding the solution that possesses better performances after fabrication.
more »
« less
GAN-DUF: Hierarchical Deep Generative Models for Design Under Free-Form Geometric Uncertainty
Abstract Deep generative models have demonstrated effectiveness in learning compact and expressive design representations that significantly improve geometric design optimization. However, these models do not consider the uncertainty introduced by manufacturing or fabrication. The past work that quantifies such uncertainty often makes simplifying assumptions on geometric variations, while the “real-world,” “free-form” uncertainty and its impact on design performance are difficult to quantify due to the high dimensionality. To address this issue, we propose a generative adversarial network-based design under uncertainty framework (GAN-DUF), which contains a deep generative model that simultaneously learns a compact representation of nominal (ideal) designs and the conditional distribution of fabricated designs given any nominal design. This opens up new possibilities of (1) building a universal uncertainty quantification model compatible with both shape and topological designs, (2) modeling free-form geometric uncertainties without the need to make any assumptions on the distribution of geometric variability, and (3) allowing fast prediction of uncertainties for new nominal designs. We can combine the proposed deep generative model with robust design optimization or reliability-based design optimization for design under uncertainty. We demonstrated the framework on two real-world engineering design examples and showed its capability of finding the solution that possesses better performance after fabrication.
more »
« less
- Award ID(s):
- 1835677
- PAR ID:
- 10471604
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- Journal Name:
- Journal of Mechanical Design
- Volume:
- 145
- Issue:
- 1
- ISSN:
- 1050-0472
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mechanical metamaterials represent an innovative class of artificial structures, distinguished by their extraordinary mechanical characteristics, which are beyond the scope of traditional natural materials. The use of deep generative models has become increasingly popular in the design of metamaterial units. The effectiveness of using deep generative models lies in their capacity to compress complex input data into a simplified, lower-dimensional latent space, while also enabling the creation of novel optimal designs through sampling within this space. However, the design process does not take into account the effect of model uncertainty due to data sparsity or the effect of input data uncertainty due to inherent randomness in the data. This might lead to the generation of undesirable structures with high sensitivity to the uncertainties in the system. To address this issue, a novel uncertainty-aware deep learning framework-based robust design approach is proposed for the design of metamaterial units with optimal target properties. The proposed approach utilizes the probabilistic nature of the deep learning framework and quantifies both aleatoric and epistemic uncertainties associated with surrogate-based design optimization. We demonstrate that the proposed design approach is capable of designing high-performance metamaterial units with high reliability. To showcase the effectiveness of the proposed design approach, a single-objective design optimization problem and a multi-objective design optimization problem are presented. The optimal robust designs obtained are validated by comparing them to the designs obtained from the topology optimization method as well as the designs obtained from a deterministic deep learning framework-based design optimization where none of the uncertainties in the system are explicitly considered.more » « less
-
Deep generative models have experienced great empirical successes in distribution learning. Many existing experiments have demonstrated that deep generative networks can efficiently generate high-dimensional complex data from a low-dimensional easy-to-sample distribution. However, this phenomenon can not be justified by existing theories. The widely held manifold hypothesis speculates that real-world data sets, such as natural images and signals, exhibit low-dimensional geometric structures. In this paper, we take such low-dimensional data structures into consideration by assuming that data distributions are supported on a low-dimensional manifold. We prove approximation and estimation theories of deep generative networks for estimating distributions on a low-dimensional manifold under the Wasserstein-1 loss. We show that the Wasserstein-1 loss converges to zero at a fast rate depending on the intrinsic dimension instead of the ambient data dimension. Our theory leverages the low-dimensional geometric structures in data sets and justifies the practical power of deep generative models. We require no smoothness assumptions on the data distribution which is desirable in practice.more » « less
-
Driven by steady progress in deep generative modeling, simulation-based inference (SBI) has emerged as the workhorse for inferring the parameters of stochastic simulators. However, recent work has demonstrated that model misspecification can compromise the reliability of SBI, preventing its adoption in important applications where only misspecified simulators are available. This work introduces robust posterior estimation~(RoPE), a framework that overcomes model misspecification with a small real-world calibration set of ground-truth parameter measurements. We formalize the misspecification gap as the solution of an optimal transport~(OT) problem between learned representations of real-world and simulated observations, allowing RoPE to learn a model of the misspecification without placing additional assumptions on its nature. RoPE demonstrates how OT and a calibration set provide a controllable balance between calibrated uncertainty and informative inference, even under severely misspecified simulators. Results on four synthetic tasks and two real-world problems with ground-truth labels demonstrate that RoPE outperforms baselines and consistently returns informative and calibrated credible intervals.more » « less
-
null (Ed.)Traditional deep neural networks (NNs) have significantly contributed to the state-of-the-art performance in the task of classification under various application domains. However, NNs have not considered inherent uncertainty in data associated with the class probabilities where misclassification under uncertainty may easily introduce high risk in decision making in real-world contexts (e.g., misclassification of objects in roads leads to serious accidents). Unlike Bayesian NN that indirectly infer uncertainty through weight uncertainties, evidential NNs (ENNs) have been recently proposed to explicitly model the uncertainty of class probabilities and use them for classification tasks. An ENN offers the formulation of the predictions of NNs as subjective opinions and learns the function by collecting an amount of evidence that can form the subjective opinions by a deterministic NN from data. However, the ENN is trained as a black box without explicitly considering inherent uncertainty in data with their different root causes, such as vacuity (i.e., uncertainty due to a lack of evidence) or dissonance (i.e., uncertainty due to conflicting evidence). By considering the multidimensional uncertainty, we proposed a novel uncertainty-aware evidential NN called WGAN-ENN (WENN) for solving an out-of-distribution (OOD) detection problem. We took a hybrid approach that combines Wasserstein Generative Adversarial Network (WGAN) with ENNs to jointly train a model with prior knowledge of a certain class, which has high vacuity for OOD samples. Via extensive empirical experiments based on both synthetic and real-world datasets, we demonstrated that the estimation of uncertainty by WENN can significantly help distinguish OOD samples from boundary samples. WENN outperformed in OOD detection when compared with other competitive counterpartsmore » « less
An official website of the United States government

