skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Arctic soil methane sink increases with drier conditions and higher ecosystem respiration
Abstract Arctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m−2 h−1(mean ± s.e.), CH4uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4uptake by Arctic soils, providing a negative feedback to global climate change.  more » « less
Award ID(s):
2017804
PAR ID:
10471677
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
Nature Journal
Date Published:
Journal Name:
Nature Climate Change
Volume:
13
Issue:
10
ISSN:
1758-678X
Page Range / eLocation ID:
1095 to 1104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The grassland biome is an important sink for atmospheric methane (CH4), a major greenhouse gas. There is considerable uncertainty in the grassland CH4sink capacity due to diverse environmental gradients in which grasslands occur, and many environmental conditions can affect abiotic (e.g., CH4diffusivity into soils) and biotic (e.g., methanotrophy) factors that determine spatial and temporal CH4dynamics. We investigated the relative importance of a soil's gas diffusivity versus net methanotroph activity in 22 field plots in seven sites distributed across the US Great Plains by making approximately biweekly measures during the growing seasons over 3 years. We quantified net methanotroph activity and diffusivity by using an approach combining a gas tracer, chamber headspace measurements, and a mathematical model. At each plot, we also measured environmental characteristics, including water‐filled pore space (WFPS), soil temperature, and inorganic nitrogen contents, and examined the relative importance of these for controlling diffusivity and net methanotroph activity. At most of the plots across the seven sites, CH4uptake rates were consistently greatest when WFPS was intermediate at the plot level. Our results show that variation in net methanotroph activity was more important than diffusivity in explaining temporal variations in net CH4uptake, but the two factors were equally important for driving spatial variation across the seven sites. WFPS was a significant predictor for diffusivity only in plots with sandy soils. WFPS was the most important control on net methanotroph activity, with net methanotroph activity showing a parabolic response to WFPS (concave down), and the shape of this response differed significantly among sites. Moreover, we found that the WFPS level at peak net methanotroph activity was strongly correlated with the mean annual precipitation of the site. These results suggest that the local precipitation regime determines unique sensitivity of CH4uptake rates to soil moisture. Our findings indicate that grassland CH4uptake may be predicted using local soil water conditions. More variable soil moisture, potentially induced through predicted future extremes of rainfall and drought, could reduce grassland CH4sink capacity in the future. 
    more » « less
  2. Abstract Boreal‐Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high‐latitude ecosystems. The carbon‐climate (C‐climate) feedback potential of northern high‐latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2and methane (CH4) fluxes. While CH4fluxes account for a smaller component of the C balance, the climatic impact of CH4outweighs CO2(28–34 times larger global warming potential on a 100‐year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2and CH4. Here, we jointly constrain a terrestrial biosphere model with in situ CO2and CH4flux observations at seven eddy covariance sites using a data‐model integration approach to resolve the integrated environmental controls on land‐atmosphere CO2and CH4exchanges in Alaska. Based on the combined CO2and CH4flux responses to climate variables, we find that 1970‐present climate trends will induce positive C‐climate feedback at all tundra sites, and negative C‐climate feedback at the boreal and shrub fen sites. The positive C‐climate feedback at the tundra sites is predominantly driven by increased CH4emissions while the negative C‐climate feedback at the boreal site is predominantly driven by increased CO2uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2and CH4biogeochemical processes—and their associated climatic sensitivities—for resolving the sign and magnitude of high‐latitude ecosystem C‐climate feedback in the coming decades. 
    more » « less
  3. Abstract Tree stems exchange CO2, CH4and N2O with the atmosphere but the magnitudes, patterns and drivers of these greenhouse gas (GHG) fluxes remain poorly understood. Our understanding mainly comes from static-manual measurements, which provide limited information on the temporal variability and magnitude of these fluxes. We measured hourly CO2, CH4and N2O fluxes at two stem heights and adjacent soils within an upland temperate forest. We analyzed diurnal and seasonal variability of fluxes and biophysical drivers (i.e., temperature, soil moisture, sap flux). Tree stems were a net source of CO2(3.80 ± 0.18 µmol m−2s−1; mean ± 95% CI) and CH4(0.37 ± 0.18 nmol m−2s−1), but a sink for N2O (−0.016 ± 0.008 nmol m−2s−1). Time series analysis showed diurnal temporal correlations between these gases with temperature or sap flux for certain days. CO2and CH4showed a clear seasonal pattern explained by temperature, soil water content and sap flux. Relationships between stem, soil fluxes and their drivers suggest that CH4for stem emissions could be partially produced belowground. High-frequency measurements demonstrate that: a) tree stems exchange GHGs with the atmosphere at multiple time scales; and b) are needed to better estimate fluxes magnitudes and understand underlying mechanisms of GHG stem emissions. 
    more » « less
  4. Abstract The atmospheric methane (CH4) concentration, a potent greenhouse gas, is on the rise once again, making it critical to understand the controls on CH4emissions. In Arctic tundra ecosystems, a substantial part of the CH4budget originates from the cold season, particularly during the “zero curtain” (ZC), when soil remains unfrozen around 0 °C. Due to the sparse data available at this time, the controls on cold season CH4emissions are poorly understood. This study investigates the relationship between the fall ZC and CH4emissions using long‐term soil temperature measurements and CH4fluxes from four eddy covariance (EC) towers in northern Alaska. To identify the large‐scale implication of the EC results, we investigated the temporal change of terrestrial CH4enhancements from the National Oceanic and Atmospheric Administration monitoring station in Utqiaġvik, AK, from 2001 to 2017 and their association with the ZC. We found that the ZC is extending later into winter (2.6 ± 0.5 days/year from 2001 to 2017) and that terrestrial fall CH4enhancements are correlated with later soil freezing (0.79 ± 0.18‐ppb CH4day−1unfrozen soil). ZC conditions were associated with consistently higher CH4fluxes than after soil freezing across all EC towers during the measuring period (2013–2017). Unfrozen soil persisted after air temperature was well below 0 °C suggesting that air temperature has poor predictive power on CH4fluxes relative to soil temperature. These results imply that later soil freezing can increase CH4loss and that soil temperature should be used to model CH4emissions during the fall. 
    more » « less
  5. Abstract Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre‐industrial times. Wetlands account for a large share of global CH4emissions, yet the magnitude and factors controlling CH4fluxes in tidal wetlands remain uncertain. We synthesized CH4flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4emissions. This effort included creating an open‐source database of chamber‐based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4m−2 year−1, with a median of 3.9 g CH4m−2 year−1, and only 25% of sites exceeding 18 g CH4m−2 year−1. The highest fluxes were observed at fresh‐oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid‐fresh‐oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m−2 s−1at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4fluxes, with pulsed releases of stored CH4at low to rising tide. This study provides data and methods to improve tidal marsh CH4emission estimates, support blue carbon assessments, and refine national and global GHG inventories. 
    more » « less