skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring Human-Robot Team Benefits Under Time Pressure in a Virtual Reality Testbed
During a natural disaster such as hurricane, earth- quake, or fire, robots have the potential to explore vast areas and provide valuable aid in search & rescue efforts. These scenar- ios are often high-pressure and time-critical with dynamically- changing task goals. One limitation to these large scale deploy- ments is effective human-robot interaction. Prior work shows that collaboration between one human and one robot benefits from shared control. Here we evaluate the efficacy of shared control for human-swarm teaming in an immersive virtual reality environment. Although there are many human-swarm interaction paradigms, few are evaluated in high-pressure settings representative of their intended end use. We have developed an open-source virtual reality testbed for realistic evaluation of human-swarm teaming performance under pressure. We conduct a user study (n=16) comparing four human-swarm paradigms to a baseline condition with no robotic assistance. Shared control significantly reduces the number of instructions needed to operate the robots. While shared control leads to marginally improved team performance in experienced participants, novices perform best when the robots are fully autonomous. Our experimental results suggest that in immersive, high-pressure settings, the benefits of robotic assistance may depend on how the human and robots interact and the human operator’s expertise.  more » « less
Award ID(s):
1837515
PAR ID:
10471785
Author(s) / Creator(s):
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Format(s):
Medium: X
Location:
Detroit, MI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Social robots hold the potential to be an effective and appropriate technology in reducing stress and improving the mental health of adolescents. In order to understand the effect of adolescent-to-robot disclosure on momentary stress, we conducted an exploratory, mixed-methods study with sixty-nine US adolescents (ages 14–21) in school settings. We compared a generic, minimalist robot interaction among three different robot embodiments: physical, digital computer screen, and immersive, virtual reality. We found participants’ momentary stress levels significantly decreased across multiple interactions over time. The physical and virtual reality embodiments were most effective for stress reduction. In addition, our qualitative findings provide unique insights into the types of stressors adolescents shared with the social robots as well as their experiences with the different interaction embodiments. 
    more » « less
  2. In remote applications that mandate human supervision, shared control can prove vital by establishing a harmonious balance between the high-level cognition of a user and the low-level autonomy of a robot. Though in practice, achieving this balance is a challenging endeavor that largely depends on whether the operator effectively interprets the underlying shared control. Inspired by recent works on using immersive technologies to expose the internal shared control, we develop a virtual reality system to visually guide human-in-the-loop manipulation. Our implementation of shared control teleoperation employs end effector manipulability polytopes, which are geometrical constructs that embed joint limit and environmental constraints. These constructs capture a holistic view of the constrained manipulator’s motion and can thus be visually represented as feedback for users on their operable space of movement. To assess the efficacy of our proposed approach, we consider a teleoperation task where users manipulate a screwdriver attached to a robotic arm’s end effector. A pilot study with prospective operators is first conducted to discern which graphical cues and virtual reality setup are most preferable. Feedback from this study informs the final design of our virtual reality system, which is subsequently evaluated in the actual screwdriver teleoperation experiment. Our experimental findings support the utility of using polytopes for shared control teleoperation, but hint at the need for longer-term studies to garner their full benefits as virtual guides. 
    more » « less
  3. Gonzalez, D. (Ed.)
    Today’s research on human-robot teaming requires the ability to test artificial intelligence (AI) algorithms for perception and decision-making in complex real-world environments. Field experiments, also referred to as experiments “in the wild,” do not provide the level of detailed ground truth necessary for thorough performance comparisons and validation. Experiments on pre-recorded real-world data sets are also significantly limited in their usefulness because they do not allow researchers to test the effectiveness of active robot perception and control or decision strategies in the loop. Additionally, research on large human-robot teams requires tests and experiments that are too costly even for the industry and may result in considerable time losses when experiments go awry. The novel Real-Time Human Autonomous Systems Collaborations (RealTHASC) facility at Cornell University interfaces real and virtual robots and humans with photorealistic simulated environments by implementing new concepts for the seamless integration of wearable sensors, motion capture, physics-based simulations, robot hardware and virtual reality (VR). The result is an extended reality (XR) testbed by which real robots and humans in the laboratory are able to experience virtual worlds, inclusive of virtual agents, through real-time visual feedback and interaction. VR body tracking by DeepMotion is employed in conjunction with the OptiTrack motion capture system to transfer every human subject and robot in the real physical laboratory space into a synthetic virtual environment, thereby constructing corresponding human/robot avatars that not only mimic the behaviors of the real agents but also experience the virtual world through virtual sensors and transmit the sensor data back to the real human/robot agent, all in real time. New cross-domain synthetic environments are created in RealTHASC using Unreal Engine™, bridging the simulation-to-reality gap and allowing for the inclusion of underwater/ground/aerial autonomous vehicles, each equipped with a multi-modal sensor suite. The experimental capabilities offered by RealTHASC are demonstrated through three case studies showcasing mixed real/virtual human/robot interactions in diverse domains, leveraging and complementing the benefits of experimentation in simulation and in the real world. 
    more » « less
  4. Augmented Reality (AR) technologies present an exciting new medium for human-robot interactions, enabling new opportunities for both implicit and explicit human-robot communication. For example, these technologies enable physically-limited robots to execute non-verbal interaction patterns such as deictic gestures despite lacking the physical morphology necessary to do so. However, a wealth of HRI research has demonstrated real benefits to physical embodiment (compared to, e.g., virtual robots on screens), suggesting AR augmentation of virtual robot parts could face challenges.In this work, we present empirical evidence comparing the use of virtual (AR) and physical arms to perform deictic gestures that identify virtual or physical referents. Our subjective and objective results demonstrate the success of mixed reality deictic gestures in overcoming these potential limitations, and their successful use regardless of differences in physicality between gesture and referent. These results help to motivate the further deployment of mixed reality robotic systems and provide nuanced insight into the role of mixed-reality technologies in HRI contexts. 
    more » « less
  5. High-stress environments, such as a NASA Control Room, require optimal task performance, as a single mistake may cause monetary loss or the loss of human life. Robots can partner with humans in a collaborative or supervisory paradigm. Such teaming paradigms require the robot to appropriately interact with the human without decreasing either»s task performance. Workload is directly correlated with task performance; thus, a robot may use a human»s workload state to modify its interactions with the human. A diagnostic workload assessment algorithm that accurately estimates workload using results from two evaluations, one peer-based and one supervisory-based, is presented. 
    more » « less