Abstract Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for both increasing and decreasing productivity, depending upon conditions. Optical remote sensing of vegetation indices based on spectral reflectance offers a means of monitoring vegetation photosynthetic activity and provides a powerful tool for observing how boreal forests respond to changing environmental conditions. Reflectance‐based remotely sensed optical signals at northern latitude or high‐altitude regions are readily confounded by snow coverage, hampering applications of satellite‐based vegetation indices in tracking vegetation productivity at large scales. Unraveling the effects of snow can be challenging from satellite data, particularly when validation data are lacking. In this study, we established an experimental system in Alberta, Canada including six boreal tree species, both evergreen and deciduous, to evaluate the confounding effects of snow on three vegetation indices: the normalized difference vegetation index (NDVI), the photochemical reflectance index (PRI), and the chlorophyll/carotenoid index (CCI), all used in tracking vegetation productivity for boreal forests. Our results revealed substantial impacts of snow on canopy reflectance and vegetation indices, expressed as increased albedo, decreased NDVI values and increased PRI and CCI values. These effects varied among species and functional groups (evergreen and deciduous) and different vegetation indices were affected differently, indicating contradictory, confounding effects of snow on these indices. In addition to snow effects, we evaluated the contribution of deciduous trees to vegetation indices in mixed stands of evergreen and deciduous species, which contribute to the observed relationship between greenness‐based indices and ecosystem productivity of many evergreen‐dominated forests that contain a deciduous component. Our results demonstrate confounding and interacting effects of snow and vegetation type on vegetation indices and illustrate the importance of explicitly considering snow effects in any global‐scale photosynthesis monitoring efforts using remotely sensed vegetation indices.
more »
« less
‘LandsatTS': an R package to facilitate retrieval, cleaning, cross‐calibration, and phenological modeling of Landsat time series data
The Landsat satellites provide decades of near‐global surface reflectance measurements that are increasingly used to assess interannual changes in terrestrial ecosystem function. These assessments often rely on spectral indices related to vegetation greenness and productivity (e.g. Normalized Difference Vegetation Index, NDVI). Nevertheless, multiple factors impede multi‐decadal assessments of spectral indices using Landsat satellite data, including ease of data access and cleaning, as well as lingering issues with cross‐sensor calibration and challenges with irregular timing of cloud‐free acquisitions. To help address these problems, we developed the ‘LandsatTS' package for R. This software package facilitates sample‐based time series analysis of surface reflectance and spectral indices derived from Landsat sensors. The package includes functions that enable the extraction of the full Landsat 5, 7, and 8 records from Collection 2 for point sample locations or small study regions using Google Earth Engine accessed directly from R. Moreover, the package includes functions for 1) rigorous data cleaning, 2) cross‐sensor calibration, 3) phenological modeling, and 4) time series analysis. For an example application, we show how ‘LandsatTS' can be used to assess changes in annual maximum vegetation greenness from 2000 to 2022 across the Noatak National Preserve in northern Alaska, USA. Overall, this software provides a suite of functions to enable broader use of Landsat satellite data for assessing and monitoring terrestrial ecosystem function during recent decades across local to global geographic extents.
more »
« less
- PAR ID:
- 10471902
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecography
- Volume:
- 2023
- Issue:
- 9
- ISSN:
- 0906-7590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.more » « less
-
Remote sensing methods are commonly used to assess and monitor ecosystem conditions in drylands, but accurate classification and detection of ecological state change are challenging due to sparse vegetation cover, high spatial heterogeneity, and high interannual variability in production. We evaluated whether phenological metrics are effective for distinguishing dryland ecological states using imagery from near-surface camera (PhenoCam) and satellite (Harmonized Landsat 8 and Sentinel-2, hereafter HLS) sources, and how effectiveness varied across wet and dry rainfall years. We analyzed time series over 92 site-years at a site in southern New Mexico undergoing transitions from grassland to shrubland on different soil types. Rainfall was a driver of phenological response across all ecological states, with wet years correlating with later start of season, later peak, higher peak greenness, and shorter growing season. This rainfall response was strongest in shrub-invaded grasslands on sandy soils. PhenoCam estimated significantly earlier start of season than HLS for shrublands on gravelly soils and earlier end of season than HLS for shrub-invaded grasslands on sandy soils. We propose integrating seasonal metrics from high-frequency PhenoCam time series with satellite assessments to improve monitoring efforts in drylands, use phenological differences across variable rainfall years to measure differences in ecosystem function among states, and use the timing and strength of peak greenness of key plant functional groups (grasses in our study site) as an indicator of ecological state change.more » « less
-
Salt marshes are highly productive ecosystems relevant for Blue Carbon assessments, but information for estimating gross primary productivity (GPP) from proximal remote sensing (PRS) is limited. Temperate salt marshes have seasonal canopy structure and metabolism changes, defining different canopy phenological phases, GPP rates, and spectral reflectance. We combined multi-annual PRS data (i.e., PhenoCam, discrete hyperspectral measurements, and automated spectral reflectance sensors) with GPP derived from eddy covariance. We tested the performance of empirical models to predict GPP from 12 common vegetation indices (VIs; e.g., NDVI, EVI, PSRI, GCC), Sun-Induced Fluorescence (SIF), and reflectance from different areas of the electromagnetic spectrum (i.e., VIS-IR, RedEdge, IR, and SIF) across the annual cycle and canopy phenological phases (i.e., Greenup, Maturity, Senescence, and Dormancy). Plant Senescence Reflectance Index (PSRI) from hyperspectral data and the Greenness Index (GCC) from PhenoCam, showed the strongest relationship with daily GPP across the annual cycle and within phenological phases (r2=0.30–0.92). Information from the visible-infrared electromagnetic region (VIS-IR) coupled with a partial least square approach (PLSR) showed the highest data-model agreement with GPP, mainly because of its relevance to respond to physiological and structural changes in the canopy, compared with indices (e.g., GCC) that particularly react to changes in the greenness of the canopy. The most relevant electromagnetic regions to model GPP were ∼550 nm and ∼710 nm. Canopy phenological phases impose challenges for modeling GPP with VIs and the PLSR approach, particularly during Maturity, Senescence, and Dormancy. As more eddy covariance sites are established in salt marshes, the application of PRS can be widely tested. Our results highlight the potential to use canopy reflectance from the visible spectrum region for modeling annual GPP in salt marshes as an example of advances within the AmeriFlux network.more » « less
-
Abstract This study uses a small unmanned aircraft system equipped with a multispectral sensor to assess various vegetation indices (VIs) for their potential to monitor iron deficiency chlorosis (IDC) in a grain sorghum (Sorghum bicolorL.) crop. IDC is a nutritional disorder that stunts a plants’ growth and causes its leaves to yellow due to an iron deficit. The objective of this project is to find the best VI to detect and monitor IDC. A series of flights were completed over the course of the growing season and processed using Structure‐from‐Motion photogrammetry to create orthorectified, multispectral reflectance maps in the red, green, red‐edge, and near‐infrared wavelengths. Ground data collection methods were used to analyze stress, chlorophyll levels, and grain yield, correlating them to the multispectral imagery for ground control and precise crop examination. The reflectance maps and soil‐removed reflectance maps were used to calculate 25 VIs whose separability was then calculated using a two‐class distance measure, determining which contained the largest separation between the pixels representing IDC and healthy vegetation. The field‐acquired data were used to conclude which VIs achieved the best results for the dataset as a whole and at each level of IDC (low, moderate, and severe). It was concluded that the MERIS terrestrial chlorophyll index, normalized difference red‐edge, and normalized green (NG) indices achieved the highest amount of separation between plants with IDC and healthy vegetation, with the NG reaching the highest levels of separability for both soil‐included and soil‐removed VIs.more » « less
An official website of the United States government

