skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2127273

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rapid climate warming has contributed to significant changes in Arctic and boreal vegetation over the past half century. Changes in vegetation can impact wildlife by altering habitat and forage availability, which can affect behavior and range use. However, animals can also influence vegetation through foraging and trampling and therefore play an important role in determining ecosystem responses to climate change. As wildlife populations grow, density‐dependent processes can prompt range expansion or shifts. One mechanism for this is density‐dependent forage reduction, which can contribute to nutritional stress and population declines, and can also alter vegetation change trajectories. We assessed the range characteristics of a migratory caribou (Rangifer tarandus) herd in east‐central Alaska and west‐central Yukon Territory as it grew (1992–2017) then declined (2017–2020). Furthermore, we analyzed the correlation between caribou relative spatial density and vegetation change over this period using remotely sensed models of plant functional type cover. Over this period, caribou population density increased in all seasonal ranges. This was most acute in the calving range where density increased 8‐fold, from 1.5 to 12.0 animals km−2. Concurrent with increasing density, we documented range shifts and expansion across summer, post‐calving and winter ranges. In particular, summer range size doubled (12,000 km2increase) and overlap with core range (areas with repeated year‐round use) was halved. Meanwhile, lichen cover, a key forage item, declined more in areas with high caribou density (2.4% absolute, 22% relative decline in cover) compared to areas where caribou were mostly absent (0.3% absolute, 1.9% relative decline). Conversely, deciduous shrub cover increased more in high caribou density areas. However, increases were dominated by less palatable shrubs whereas more palatable shrubs (i.e., willow [Salixspp.]) were stable or declined slightly. These changes in vegetation cover were small relative to uncertainty in the map products used to calculate change. Nonetheless, correlations between vegetation change and caribou range characteristics, along with concerning demographic trends reported over this same period, suggest changing forage conditions may have played a role in the herd's subsequent population decline. Our research highlights the potential of remotely sensed metrics of vegetation change for assessing the impacts of herbivory and trampling and stresses the importance of in situ data such as exclosures for validating such findings. 
    more » « less
    Free, publicly-accessible full text available June 18, 2026
  2. Abstract Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we presentThe Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less
  3. Abstract Changes in vegetation distribution are underway in Arctic and boreal regions due to climate warming and associated fire disturbance. These changes have wide ranging downstream impacts—affecting wildlife habitat, nutrient cycling, climate feedbacks and fire regimes. It is thus critical to understand where these changes are occurring and what types of vegetation are affected, and to quantify the magnitude of the changes. In this study, we mapped live aboveground biomass for five common plant functional types (PFTs; deciduous shrubs, evergreen shrubs, forbs, graminoids and lichens) within Alaska and northwest Canada, every five years from 1985 to 2020. We employed a multi-scale approach, scaling from field harvest data and unmanned aerial vehicle-based biomass predictions to produce wall-to-wall maps based on climatological, topographic, phenological and Landsat spectral predictors. We found deciduous shrub and graminoid biomass were predicted best among PFTs. Our time-series analyses show increases in deciduous (37%) and evergreen shrub (7%) biomass, and decreases in graminoid (14%) and lichen (13%) biomass over a study area of approximately 500 000 km2. Fire was an important driver of recent changes in the study area, with the largest changes in biomass associated with historic fire perimeters. Decreases in lichen and graminoid biomass often corresponded with increasing shrub biomass. These findings illustrate the driving trends in vegetation change within the Arctic/boreal region. Understanding these changes and the impacts they in turn will have on Arctic and boreal ecosystems will be critical to understanding the trajectory of climate change in the region. 
    more » « less
  4. Chen, Jing M (Ed.)
    The Arctic is warming faster than anywhere else on Earth, placing tundra ecosystems at the forefront of global climate change. Plant biomass is a fundamental ecosystem attribute that is sensitive to changes in climate, closely tied to ecological function, and crucial for constraining ecosystem carbon dynamics. However, the amount, functional composition, and distribution of plant biomass are only coarsely quantified across the Arctic. Therefore, we developed the first moderate resolution (30 m) maps of live aboveground plant biomass (g m− 2) and woody plant dominance (%) for the Arctic tundra biome, including the mountainous Oro Arctic. We modeled biomass for the year 2020 using a new synthesis dataset of field biomass harvest measurements, Landsat satellite seasonal synthetic composites, ancillary geospatial data, and machine learning models. Additionally, we quantified pixel-wise uncertainty in biomass predictions using Monte Carlo simulations and validated the models using a robust, spatially blocked and nested cross-validation procedure. Observed plant and woody plant biomass values ranged from 0 to ~6000 g m− 2 (mean ≈350 g m− 2), while predicted values ranged from 0 to ~4000 g m− 2 (mean ≈275 g m− 2), resulting in model validation root-mean-squared-error (RMSE) ≈400 g m− 2 and R2 ≈ 0.6. Our maps not only capture large-scale patterns of plant biomass and woody plant dominance across the Arctic that are linked to climatic variation (e.g., thawing degree days), but also illustrate how fine-scale patterns are shaped by local surface hydrology, topography, and past disturbance. By providing data on plant biomass across Arctic tundra ecosystems at the highest resolution to date, our maps can significantly advance research and inform decision-making on topics ranging from Arctic vegetation monitoring and wildlife conservation to carbon accounting and land surface modeling 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  5. Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic Plant Aboveground Biomass Synthesis Dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass grams per meter squared (g/m^2) on 2327 sample plots in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less
  6. This dataset provides estimates of live, oven-dried aboveground biomass of all plants (tree, shrub, graminoid, forb, bryophyte) and all woody plants (tree, shrub) at 30-meter resolution across the Arctic tundra biome. Estimates of woody plant dominance are also provided as: (woody plant biomass / plant biomass) * 100. Plant biomass and woody plant biomass were estimated for each pixel (grams per square meter [g / m2]) using field harvest data for calibration/validation along with modeled seasonal surface reflectance data derived using Landsat satellite imagery and the Continuous Change Detection and Classification algorithm, and other supplementary predictors related to topography, region (e.g. bioclimate zone, ecosystem type), land cover, and derivative spectral products. Modeling was performed in a two-stage process using random forest models. First, biomass presence/absence was predicted using probability forests. Then, biomass quantity was predicted using regression forests. The model outputs were combined to produce final biomass estimates. Pixel uncertainty was assessed using Monte Carlo iterations. Field and remote sensing data were permuted during each iteration and the median (50th percentile, p500) predictions for each pixel were considered best estimates. In addition, this dataset provides the lower (2.5th percentile, p025) and upper (97.5th percentile, p975) bounds of a 95% uncertainty interval. Estimates of woody plant dominance are not modeled directly, but rather derived from plant biomass and woody plant biomass best estimates. The Pan Arctic domain includes both the Polar Arctic, defined using bioclimate zone data from the Circumpolar Arctic Vegetation Mapping Project (CAVM; Walker et al., 2005), and the Oro Arctic (treeless alpine tundra at high latitudes outside the Polar Arctic), defined using tundra ecoregions from the RESOLVE ecoregions dataset (Dinerstein et al., 2017) and treeline data from CAVM (CAVM Team, 2003). The mapped products focus on Arctic tundra vegetation biomass, but the coarse delineation of this biome meant some forested areas were included within the study domain. Therefore, this dataset also provides a tree mask product that can be used to mask out areas with canopy height ≥ 5 meters. This mask helps reduce, but does not eliminate entirely, areas of dense tree cover within the domain. Users should be cautious of predictions in forested areas as the models used to predict biomass were not well constrained in these areas. This dataset includes 132 files: 128 cloud-optimized GeoTIFFs, 2 tables in comma-separated values (CSV) format, 1 vector polygon in Shapefile format, and one figure in JPEG format. Raster data is provided in the WGS 84 / North Pole LAEA Bering Sea projection (EPSG:3571) at 30 meter (m) resolution. Raster data are tiled with letters representing rows and numbers representing columns, but note that some tiles do not contain unmasked pixels. We included all tiles nonetheless to maintain consistency. Tiling information can be found in the ‘metadata’ directory as a figure (JPEG) or shapefile. 
    more » « less
  7. The Landsat satellites provide decades of near‐global surface reflectance measurements that are increasingly used to assess interannual changes in terrestrial ecosystem function. These assessments often rely on spectral indices related to vegetation greenness and productivity (e.g. Normalized Difference Vegetation Index, NDVI). Nevertheless, multiple factors impede multi‐decadal assessments of spectral indices using Landsat satellite data, including ease of data access and cleaning, as well as lingering issues with cross‐sensor calibration and challenges with irregular timing of cloud‐free acquisitions. To help address these problems, we developed the ‘LandsatTS' package for R. This software package facilitates sample‐based time series analysis of surface reflectance and spectral indices derived from Landsat sensors. The package includes functions that enable the extraction of the full Landsat 5, 7, and 8 records from Collection 2 for point sample locations or small study regions using Google Earth Engine accessed directly from R. Moreover, the package includes functions for 1) rigorous data cleaning, 2) cross‐sensor calibration, 3) phenological modeling, and 4) time series analysis. For an example application, we show how ‘LandsatTS' can be used to assess changes in annual maximum vegetation greenness from 2000 to 2022 across the Noatak National Preserve in northern Alaska, USA. Overall, this software provides a suite of functions to enable broader use of Landsat satellite data for assessing and monitoring terrestrial ecosystem function during recent decades across local to global geographic extents. 
    more » « less
  8. Arctic vegetation communities are rapidly changing with climate warming, which impacts wildlife, carbon cycling and climate feedbacks. Accurately monitoring vegetation change is thus crucial, but scale mismatches between field and satellite-based monitoring cause challenges. Remote sensing from unmanned aerial vehicles (UAVs) has emerged as a bridge between field data and satellite-based mapping. We assess the viability of using high resolution UAV imagery and UAV-derived Structure from Motion (SfM) to predict cover, height and aboveground biomass (henceforth biomass) of Arctic plant functional types (PFTs) across a range of vegetation community types. We classified imagery by PFT, estimated cover and height, and modeled biomass from UAV-derived volume estimates. Predicted values were compared to field estimates to assess results. Cover was estimated with root-mean-square error (RMSE) 6.29-14.2% and height was estimated with RMSE 3.29-10.5 cm, depending on the PFT. Total aboveground biomass was predicted with RMSE 220.5 g m-2, and per-PFT RMSE ranged from 17.14-164.3 g m-2. Deciduous and evergreen shrub biomass was predicted most accurately, followed by lichen, graminoid, and forb biomass. Our results demonstrate the effectiveness of using UAVs to map PFT biomass, which provides a link towards improved mapping of PFTs across large areas using earth observation satellite imagery. 
    more » « less
  9. Arctic landscapes are rapidly changing with climate warming. Vegetation communities are restructuring, which in turn impacts wildlife, permafrost, carbon cycling and climate feedbacks. Accurately monitoring vegetation change is thus crucial, but notable mismatches in scale occur between current field and satellite-based monitoring. Remote sensing from unmanned aerial vehicles (UAVs) has emerged as a bridge between field data and satellite imagery mapping. In this work we assess the viability of using high resolution UAV imagery (RGB and multispectral), along with UAV derived Structure from Motion (SfM) to predict cover, height and above-ground biomass of common Arctic plant functional types (PFTs) across a wide range of vegetation community types. We collected field data and UAV imagery from 45 sites across Alaska and northwest Canada. We then classified UAV imagery by PFT, estimated cover and height, and modeled biomass from UAV-derived volume estimates. Here we present datasets summarizing this data. 
    more » « less