skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An algebraic quantum field theoretic approach to toric code with gapped boundary
Topologically ordered quantum spin systems have become an area of great interest, as they may provide a fault-tolerant means of quantum computation. One of the simplest examples of such a spin system is Kitaev’s toric code. Naaijkens made mathematically rigorous the treatment of toric code on an infinite planar lattice (the thermodynamic limit), using an operator algebraic approach via algebraic quantum field theory. We adapt his methods to study the case of toric code with gapped boundary. In particular, we recover the condensation results described in Kitaev and Kong and show that the boundary theory is a module tensor category over the bulk, as expected.  more » « less
Award ID(s):
1654159 2154389
PAR ID:
10472041
Author(s) / Creator(s):
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Journal of Mathematical Physics
Volume:
64
Issue:
10
ISSN:
0022-2488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The recent article by Jones et al. [arXiv:2307.12552 (2023)] gave local topological order (LTO) axioms for a quantum spin system, showed they held in Kitaev’s Toric Code and in Levin-Wen string net models, and gave a bulk boundary correspondence to describe bulk excitations in terms of the boundary net of algebras. In this article, we prove the LTO axioms for Kitaev’s Quantum Double model for a finite group G. We identify the boundary nets of algebras with fusion categorical nets associated to (Hilb(G),C[G]) or (Rep(G),CG) depending on whether the boundary cut is rough or smooth, respectively. This allows us to make connections to the work of Ogata [Ann. Henri Poincaré 25, 2353–2387 (2024)] on the type of the cone von Neumann algebras in the algebraic quantum field theory approach to topological superselection sectors. We show that the boundary algebras can also be calculated from a trivial G-symmetry protected topological phase (G-SPT), and that the gauging map preserves the boundary algebras. Finally, we compute the boundary algebras for the (3 + 1)D Quantum Double model associated to an Abelian group. 
    more » « less
  2. Abstract We introduce a set of axioms for locally topologically ordered quantum spin systems in terms of nets of local ground state projections, and we show they are satisfied by Kitaev’s Toric Code and Levin-Wen type models. For a locally topologically ordered spin system on$$\mathbb {Z}^{k}$$, we define a local net of boundary algebras on$$\mathbb {Z}^{k-1}$$, which provides a mathematically precise algebraic description of the holographic dual of the bulk topological order. We construct a canonical quantum channel so that states on the boundary quasi-local algebra parameterize bulk-boundary states without reference to a boundary Hamiltonian. As a corollary, we obtain a new proof of a recent result of Ogata [Oga24] that the bulk cone von Neumann algebra in the Toric Code is of type$$\mathrm {II}$$, and we show that Levin-Wen models can have cone algebras of type$$\mathrm {III}$$. Finally, we argue that the braided tensor category of DHR bimodules for the net of boundary algebras characterizes the bulk topological order in (2+1)D, and can also be used to characterize the topological order of boundary states. 
    more » « less
  3. Spatially-coupled (SC) codes is a class of convolutional LDPC codes that has been well investigated in classical coding theory thanks to their high performance and compatibility with low-latency decoders. We describe toric codes as quantum counterparts of classical two-dimensional spatially-coupled (2D-SC) codes, and introduce spatially-coupled quantum LDPC (SC-QLDPC) codes as a generalization. We use the convolutional structure to represent the parity check matrix of a 2D-SC code as a polynomial in two indeterminates, and derive an algebraic condition that is both necessary and sufficient for a 2D-SC code to be a stabilizer code. This algebraic framework facilitates the construction of new code families. While not the focus of this paper, we note that small memory facilitates physical connectivity of qubits, and it enables local encoding and low-latency windowed decoding. In this paper, we use the algebraic framework to optimize short cycles in the Tanner graph of 2D-SC hypergraph product (HGP) codes that arise from short cycles in either component code. While prior work focuses on QLDPC codes with rate less than 1/10, we construct 2D-SC HGP codes with small memories, higher rates (about 1/3), and superior thresholds. 
    more » « less
  4. Abstract We develop a nonequilibrium increment method in quantum Monte Carlo simulations to obtain the Rényi entanglement entropy of various quantum many-body systems with high efficiency and precision. To demonstrate its power, we show the results on a few important yet difficult (2 + 1) d quantum lattice models, ranging from the Heisenberg quantum antiferromagnet with spontaneous symmetry breaking, the quantum critical point with O(3) conformal field theory (CFT) to the toric code $${{\mathbb{Z}}}_{2}$$ Z 2 topological ordered state and the Kagome $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquid model with frustration and multi-spin interactions. In all these cases, our method either reveals the precise CFT data from the logarithmic correction or extracts the quantum dimension in topological order, from the dominant area law in finite-size scaling, with very large system sizes, controlled errorbars, and minimal computational costs. Our method, therefore, establishes a controlled and practical computation paradigm to obtain the difficult yet important universal properties in highly entangled quantum matter. 
    more » « less
  5. Topological quantum memory can protect information against local errors up to finite error thresholds. Such thresholds are usually determined based on the success of decoding algorithms rather than the intrinsic properties of the mixed states describing corrupted memories. Here we provide an intrinsic characterization of the breakdown of topological quantum memory, which both gives a bound on the performance of decoding algorithms and provides examples of topologically distinct mixed states. We employ three information-theoretical quantities that can be regarded as generalizations of the diagnostics of ground-state topological order, and serve as a definition for topological order in error-corrupted mixed states. We consider the topological contribution to entanglement negativity and two other metrics based on quantum relative entropy and coherent information. In the concrete example of the two-dimensional (2D) Toric code with local bit-flip and phase errors, we map three quantities to observables in 2D classical spin models and analytically show they all undergo a transition at the same error threshold. This threshold is an upper bound on that achieved in any decoding algorithm and is indeed saturated by that in the optimal decoding algorithm for the Toric code. Published by the American Physical Society2024 
    more » « less