Explainability is increasingly recognized as an enabling technology for the broader adoption of machine learning (ML), particularly for safety-critical applications. This has given rise to explainable ML, which seeks to enhance the explainability of neural networks through the use of explanators. Yet, the pursuit for better explainability inadvertently leads to increased security and privacy risks. While there has been considerable research into the security risks of explainable ML, its potential privacy risks remain under-explored. To bridge this gap, we present a systematic study of privacy risks in explainable ML through the lens of membership inference. Building on the observation that, besides the accuracy of the model, robustness also exhibits observable differences among member samples and non-member samples, we develop a new membership inference attack. This attack extracts additional membership features from changes in model confidence under different levels of perturbations guided by the importance highlighted by the attribution maps in the explanators. Intuitively, perturbing important features generally results in a bigger loss in confidence for member samples. Using the member-non-member differences in both model performance and robustness, an attack model is trained to distinguish the membership. We evaluated our approach with seven popular explanators across various benchmark models and datasets. Our attack demonstrates there is non-trivial privacy leakage in current explainable ML methods. Furthermore, such leakage issue persists even if the attacker lacks the knowledge of training datasets or target model architectures. Lastly, we also found existing model and output-based defense mechanisms are not effective in mitigating this new attack.
more »
« less
Let the Privacy Games Begin! A Unified Treatment of Data Inference Pivacy in Machine Learning. 2023 IEEE Symposium on Security and Privacy.
Abstract—Deploying machine learning models in production
may allow adversaries to infer sensitive information about
training data. There is a vast literature analyzing different
types of inference risks, ranging from membership inference
to reconstruction attacks. Inspired by the success of games
(i.e. probabilistic experiments) to study security properties in
cryptography, some authors describe privacy inference risks in
machine learning using a similar game-based style. However,
adversary capabilities and goals are often stated in subtly
different ways from one presentation to the other, which makes
it hard to relate and compose results. In this paper, we present a
game-based framework to systematize the body of knowledge
on privacy inference risks in machine learning. We use this
framework to (1) provide a unifying structure for definitions
of inference risks, (2) formally establish known relations among
definitions, and (3) to uncover hitherto unknown relations that
would have been difficult to spot otherwise.
Index Terms—privacy, machine learning, differential privacy,
membership inference, attribute inference, property inference
more »
« less
- Award ID(s):
- 2343611
- NSF-PAR ID:
- 10472134
- Publisher / Repository:
- 2023 IEEE Symposium on Security and Privacy. ArXiv.
- Date Published:
- Format(s):
- Medium: X
- Location:
- 2023 IEEE Symposium on Security and Privacy. ArXiv.
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by the ever-increasing concerns on personal data privacy and the rapidly growing data volume at local clients, federated learning (FL) has emerged as a new machine learning setting. An FL system is comprised of a central parameter server and multiple local clients. It keeps data at local clients and learns a centralized model by sharing the model parameters learned locally. No local data needs to be shared, and privacy can be well protected. Nevertheless, since it is the model instead of the raw data that is shared, the system can be exposed to the poisoning model attacks launched by malicious clients. Furthermore, it is challenging to identify malicious clients since no local client data is available on the server. Besides, membership inference attacks can still be performed by using the uploaded model to estimate the client's local data, leading to privacy disclosure. In this work, we first propose a model update based federated averaging algorithm to defend against Byzantine attacks such as additive noise attacks and sign-flipping attacks. The individual client model initialization method is presented to provide further privacy protections from the membership inference attacks by hiding the individual local machine learning model. When combining these two schemes, privacy and security can be both effectively enhanced. The proposed schemes are proved to converge experimentally under non-lID data distribution when there are no attacks. Under Byzantine attacks, the proposed schemes perform much better than the classical model based FedAvg algorithm.more » « less
-
This survey paper provides an overview of the current state of Artificial Intelligence (AI) attacks and risks for AI security and privacy as artificial intelligence becomes more prevalent in various applications and services. The risks associated with AI attacks and security breaches are becoming increasingly apparent and cause many financial and social losses. This paper will categorize the different types of attacks on AI models, including adversarial attacks, model inversion attacks, poisoning attacks, data poisoning attacks, data extraction attacks, and membership inference attacks. The paper also emphasizes the importance of developing secure and robust AI models to ensure the privacy and security of sensitive data. Through a systematic literature review, this survey paper comprehensively analyzes the current state of AI attacks and risks for AI security and privacy and detection techniques.more » « less
-
This survey paper provides an overview of the current state of Artificial Intelligence (AI) attacks and risks for AI security and privacy as artificial intelligence becomes more prevalent in various applications and services. The risks associated with AI attacks and security breaches are becoming increasingly apparent and cause many financial and social losses. This paper will categorize the different types of attacks on AI models, including adversarial attacks, model inversion attacks, poisoning attacks, data poisoning attacks, data extraction attacks, and membership inference attacks. The paper also emphasizes the importance of developing secure and robust AI models to ensure the privacy and security of sensitive data. Through a systematic literature review, this survey paper comprehensively analyzes the current state of AI attacks and risks for AI security and privacy and detection techniques.more » « less
-
A surprising phenomenon in modern machine learning is the ability of a highly overparameterized model to generalize well (small error on the test data) even when it is trained to memorize the training data (zero error on the training data). This has led to an arms race towards increasingly overparameterized models (c.f., deep learning). In this paper, we study an underexplored hidden cost of overparameterization: the fact that overparameterized models may be more vulnerable to privacy attacks, in particular the membership inference attack that predicts the (potentially sensitive) examples used to train a model. We significantly extend the relatively few empirical results on this problem by theoretically proving for an overparameterized linear regression model in the Gaussian data setting that membership inference vulnerability increases with the number of parameters. Moreover, a range of empirical studies indicates that more complex, nonlinear models exhibit the same behavior. Finally, we extend our analysis towards ridge-regularized linear regression and show in the Gaussian data setting that increased regularization also increases membership inference vulnerability in the overparameterized regime.more » « less