We present an autonomous data-driven framework that iteratively explores the experimental design space of silver nanoparticle synthesis to obtain control over the formation of a desired morphology and size. The objective of the method is to identify design rules such as the effects of the design variables on the structure of the nanoparticle. The framework balances multimodal characterization methods (i.e. UV-vis spectroscopy, SAXS, TEM), taking into account the cost of performing a measurement and the quality of information gained. By integrating with an AI agent, we identify important design variables in the synthesis of small colloidally stable plate-like silver particles and outline how each variable affects plate thickness, radius, polydispersity, and relative concentration. Our findings are consistent with the literature, demonstrating that the framework could be further applied to new systems that have not been well characterized and understood. The framework is generalizable and allows tangible knowledge extraction from the high-throughput experimental runs while still considering inherent stochasticity. 
                        more » 
                        « less   
                    
                            
                            Anisotropic Gold Nanomaterial Synthesis Using Peptide Facet Specificity and Timed Intervention
                        
                    
    
            Thin metal particles with two-dimensional symmetry are attractive for multiple ap- plications, but are difficult to synthesize in a reproducible manner. Although molecules that selectively adsorb to facets have been used to control nanoparticle shape, there is still limited research into the temporal control of growth processes to control these structural outcomes. Moreover, much of the current research into the growth of thin two-dimensional particles lacks mechanistic details. In this work, we study why the substitution of isoleucine for methionine in a gold binding peptide (Z2, RMRMKMK) results in an increase in gold nanoparticle anisotropy. Nanoplatelet growth in the pres- ence of Z2M246I (RIRIKIK) is characterized using in situ small-angle X-ray scattering (SAXS) and UV-Vis spectroscopy. Fitting time-resolved SAXS profiles reveals that 10 nm thick particles with two-dimensional symmetry are formed within the first few min- utes of the reaction. Next, through a combination of electron diffraction and molecular dynamics simulations, we show that substitution of methionine for isoluecine increases the (111) facet selectivity in Z2M246I, and conclude that this is key to the growth of nanoplatelets. However, the potential application of nanoplatelets formed using Z2M246I is limited due to their uncontrolled lateral growth, aggregation, and rapid sedimentation. Therefore, we use a liquid handling robot to perform temporally con- trolled synthesis and dynamic intervention through the addition of Z2 to nanoplatelets growing in the presence of Z2M246I at different times. UV-Vis spectroscopy dynamic light scattering, and electron microscopy show that dynamic intervention results in control over the mean-size and stability of plate-like particles. Finally, we use in situ UV-Vis spectroscopy to study plate-like particle growth at different times of interven- tion. Our results demonstrate that both the selectivity and magnitude of binding free energy towards lattices is important for controlling nanoparticle growth pathways. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10472268
- Publisher / Repository:
- Langmuir
- Date Published:
- Journal Name:
- Langmuir
- ISSN:
- 0743-7463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Gold nanoparticles (GNPs) are commonly synthesized using the Turkevich method, but there are limitations on the maximum concentration of gold nanoparticles that can be achieved using this method (often < 1 mM (=0.34 mg/mL) gold precursor loading). Here, we report an inverse Turkevich method which significantly increases the concentration of gold nanoparticles (up to 5-fold) in the aqueous phase by introducing poly (vinyl alcohol) (PVA) to the synthesis system for stabilization. The aim of this study is to understand the effect of PVA and other synthesis parameters, such as trisodium citrate and tetrachloroauric acid concentration, with the goal of maximizing concentration while maintaining gold nanoparticle morphology, stability, and narrow size distribution. The size distribution of GNPs is investigated for a range of parameters by dynamic light scattering and electron microscopy, and ultraviolet-visible (UV–vis) spectroscopy is also utilized to explore the localized surface plasmon resonance (LSPR). Further, the interaction between GNPs and PVA is investigated by Fourier-transform infrared spectroscopy. In addition to increasing the gold loading by varying synthesis parameters, we also develop a novel anti-solvent precipitation method for the PVA-coated GNPs, which enables continuous condensation and purification of GNPs by forming a gold/PVA nanocomposite.more » « less
- 
            Abstract Liquid interfaces facilitate the organization of nanometer‐scale biomaterials with plasmonic properties suitable for molecular diagnostics. Using hierarchical assemblage of 2D hafnium disulfide nanoplatelets and zero‐dimensional spherical gold nanoparticles, the design of a multifunctional material is reported. When the target analyte is present, the nanocomposites’ self‐assembling pattern changes, altering their plasmonic response. Using monkeypox virus (MPXV) as an example, the findings reveal that adding genomic DNA to the nanocomposite surface increases the agglomeration between gold nanoparticles and decreases the π‐stacking distance between hafnium disulfide nanoplatelets. Further, this self‐assembled nanomaterial is found to have minimal cross‐reactivity toward other pathogens and a limit of detection of 7.6 pg µL−1(i.e., 3.57 × 104copies µL−1) toward MPXV. Overall, this study helped to gain a better understanding of the genomic organization of MPXV to chemically design and develop targeted nucleotides. The study has been validated by UV–vis spectroscopy, X‐ray diffraction, scanning transmission electron microscopy, surface‐enhanced Raman microscopy and electromagnetic simulation studies. To the best knowledge, this is the first study in literature reporting selective molecular detection of MPXV within a few minutes and without the use of any high‐end instrumental techniques like polymerase chain reactions.more » « less
- 
            Abstract The in‐plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water–oil interface is investigated in situ by UV–vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine‐functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non‐plasmonic (PS/SiO2) NPs. As the PS/SiO2content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmaxchanges within the first few minutes of adsorption due to weak attractive inter‐NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non‐plasmonic NP content. Grazing incidence small angle X‐ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non‐plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase‐separated NP films.more » « less
- 
            This paper describes the synthesis and characterization of colloidally stable, 18 nm silica nanoparticles that are functionalized with amine groups. Electron microscopy, small-angle X-ray scattering (SAXS), and dynamic light scattering show the amine grafting does not impact particle size. SAXS and DLS confirm the particles do not aggregate at 10 mg mL −1 and pH 2 for 30 days. Ninhydrin analysis, fluorescamine binding, and NMR studies of carboxylic acid binding show that the amines are present on the surface and accessible with maximum loading calculated to be 0.14 mmol g −1 . These materials should find a range of use in nanotechnology applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    