skip to main content


This content will become publicly available on June 28, 2024

Title: Vessels of Opportunity in Marine Science Outreach and Education: Case Study and Caveats

Studying unexpected, ephemeral, or transient events in ocean ecosystems, such as gelatinous zooplankton blooms, is important because it provides us with valuable data on how our oceans may be changing in response to climate change and other anthropogenic activities. However, planning for such events is nearly impossible and making use of opportunistically acquired data allows the marine science community to be adaptive and efficient given the logistical and financial constraints of time at sea and in the field. Because such sampling events are often responsive rather than planned, they are typically not accompanied by outreach and education efforts. This commentary considers if opportunistically acquired data sets can be applied to generate opportunistic outreach and education activities. A case study is provided with successes and caveats outlined.

 
more » « less
Award ID(s):
1745081
NSF-PAR ID:
10472276
Author(s) / Creator(s):
; ;
Publisher / Repository:
Current: The Journal of Marine Education
Date Published:
Journal Name:
Current: The Journal of Marine Education
Volume:
37
Issue:
2
ISSN:
0889-5546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is well-known that women and minorities are underrepresented in STEM fields. This is true of mechatronics and robotics engineering (MRE), despite targeted K-12 activities, such as the FIRST Robotics Competition, that aim to increase diversity in engineering. This paper is a first step in assessing the current status of women and underrepresented minorities (URM) as well as investigating solutions to increase diversity and support inclusion of these groups specifically in MRE. The paper examines challenges and potential solutions identified in The 4th Future of Mechatronics and Robotics Education and in an online survey of the MRE college instructor community. Survey participants reported on courses, programs, clubs, and outreach events at the college level. The sample size is small, but the data provide initial findings to inform further study. Qualitative text analysis was used with the survey data. Five themes emerged, ordered from most frequent to least: the instructor’s perspective, social context of MRE, specific attributes of MRE, pre-college interventions, and in-college interventions. The most promising new ideas are in curriculum reform to incorporate social context into engineering education and in expanding STEM outreach by colleges to elementary and middle schools. Existing programs should also be strengthened, including robotics competitions, NSF Research Experiences for Undergraduates, STEM summer camps, bridge programs, and affinity programs. Other important aspects include actively engaging parents, and working to be more inclusive of first-generation Americans and first-generation college students. The paper concludes with initial suggestions to increase diversity and inclusion in MRE and areas for further study. 
    more » « less
  2. Background & Program Description: The link between student engagement and retention is well-established in the education literature. As a result, many colleges have developed first-year experience programs to engage students in early technical work and to promote community-building. However, many of these student success programs require participation in extracurricular activities, which require time outside of class. Yet time for extracurricular activities is a luxury that many students of low socioeconomic status (SES) cannot afford due to family or work obligations. The Scholarships in STEM (S-STEM) program, funded by the National Science Foundation, provides crucial financial support to high-achieving low-SES STEM students. The S-STEM scholarships give students the option to work less or not at all. The intended result is that students regain the time afforded to their more privileged peers, thereby also giving them the opportunity to more effectively engage with their institution, studies, and peers. The Endeavour Program is a two-year program that incorporates the S-STEM financial support into a multi-faceted and multi-college program in STEM designed to increase the level of student engagement in school. The scholars, who are recruited from three colleges, take classes together, work on hands-on team projects, attend professional and personal development events, participate in outreach events, and conduct research with faculty mentors. Over the course of the two-year program, four dimensions of student engagement (academic, behavioral, cognitive, and affective) are tracked to determine the appropriateness of using these engagement levels as predictors of success. Results: Two cohorts of 20 students were recruited in the fall of 2017 and in the fall of 2018. The first cohort completed the two-year program in the spring of 2020, and the second cohort began the second year of the program in the fall of 2020. No third cohort was recruited in 2020 due the Covid19 pandemic. The third and fourth cohorts will now enter the program in the fall of 2021 and the fall of 2022 respectively. Overall, the results of the Endeavour Program have been positive. The final retention outcome for the first cohort (the only cohort to complete the program thus far) was 85% (17/20). Retention for the second cohort is currently at 100% (20/20). Initial results show that the S-STEM scholars are performing academically as well as their peers who do not share the same risk factors. In addition, the number of completed hours is also on par with their peers. However, the most significant gains were observed in the qualitative data. Students expressed fears and anxieties about the high school to college transition and reported that the guidance provided and the community formed through the Endeavour Program alleviated many of those negative emotions. The full paper shows student engagement data obtained over time for the first and second cohorts as well as lessons learned and directions for future work. Also, examples of advising charts created in an engagement data dashboard show how the quantitative engagement data has been compiled and organized to show early warning signs for current and future cohorts. 
    more » « less
  3. Highlighting the role engineers have in solving community and global challenges has been shown to positively affect students' engineering identity development. Poor water quality and water scarcity have been recognized as a critical global issue by many organizations, including the United Nations. Students of all ages can relate to the importance of having drinkable water through their experiences with thirst, drought, floods, news stories, or just accidentally swallowing salt water while on holiday at a beach. This talk describes the development and implementation of a series of engineering education activities focused on water quality. These activities ranged from three-minute activities for community outreach events to week-long lessons for engineering freshmen. Younger students were able to readily recognize how using different types of filters and natural media can increase the clarity of water with particulate or color contamination. Middle and high school students were able to design and test filter set-ups and learn about the role of nanotechnology in water purification. They also developed analytical and data analysis skills through qualitative and quantitative water quality measurements. Freshman engineering students learned about the water industry, local and global water issues, and performed water quality sampling around their campuses using portable meters that log data via a cell phone app. The activities and results were then used to meet university-course outcomes related to the societal impacts of engineering, statistical analysis, plotting data, and written communication. By centering learning on a tangible and important engineering challenge, this work provides a flexible framework for learning and problem solving that can be tailored to the needs of students from different age groups and for different learning outcomes. 
    more » « less
  4. Given the strategic importance of the semiconductor manufacturing sector and the CHIPS Act impact on microelectronics, it is more imperative than ever to train the next generation of scientists and engineers in the field. However, this is a challenging feat since nanofabrication education uses hands-on cleanroom facilities. Since cleanrooms are expensive, have access constraints due to safety concerns, and offer limited instructional space, class sizes and outreach events are limited. To complement instruction in nanotechnology education, there is some open- or educational-access software, which is computer-based and focuses only on training for individual equipment, not on the typical workflow for device fabrication. The objective of this work was to develop an accessible virtual reality ecosystem that provides an immersive education and outreach on device nanofabrication that is user-friendly for a broad range of audiences. At the George Washington University (GWU), a virtual reality cleanroom prototype has been developed. It consists of a 45-minute gameplay module that covers the process flow for the fabrication of micro-scale resistors, from sample preparation to electrical characterization. We also performed a mixed methods study to investigate how 5 students in a nanoelectronics course utilized this virtual reality cleanroom prototype and what changes they recommend to improve its user interface and learner experience. The study population for this work-in-progress consisted of students enrolled in a nanoelectronics course at GWU during the 2022-2023 school year. Students taking this course can be undergraduate (junior or senior) or graduate (masters or PhD). The research questions for this study were 1) what is the user experience with the virtual reality cleanroom prototype, 2) what challenges, if any, did students experience, and 3) what changes did students recommend to improve the virtual reality cleanroom prototype learner experience? Preliminary results indicate that the students found the virtual reality cleanroom simulator helpful in repeatedly exploring the cleanroom space and the nanofabrication process flow in a safe way, thus developing more confidence in utilizing the actual cleanroom facility. The results of this study will provide insight on the design of future modules with more complicated levels and device process flows. Moreover, the study could inform the development of other virtual reality simulators for other lab activities. The improved usability of the proposed software could provide students in large classes or attending online programs in electrical and computer engineering, as well as K-12 students participating in nanotechnology-related outreach events, the opportunity to conduct realistic process workflows, learn first-hand about nanofabrication, and practice using a nanofabrication lab via trial and error in a safe virtual environment. 
    more » « less
  5. Exposure to science, technology, engineering, and mathematics (STEM) at a young age is key to inspiring students to pursue careers in these fields. Thus, many institutions of higher education offer events to engage youth in STEM activities. These events are most effective when they are adapted to the specific audience. In Montana, a large percentage of the K-12 student population is from rural communities, where the ability to participate in such events is limited due to travel logistics and a shortage of relatable materials. We have developed a computer science outreach module that targets these populations through the use of storytelling and the Alice programming environment, thus drawing a parallel between storytelling and building algorithms. We describe the module's implementation, report and analyze feedback, and provide lessons learned from the module's implementation at outreach events. 
    more » « less