In engineering education, conceptual understanding of the subject matter is as important as the attainment of practical skills. Therefore, teaching methodology should be designed in such a way that it enhances student conceptual understanding. To enhance conceptual understanding of fluid flow measurement, in this study, we report on the development of a low-cost, small-sized, reproducible, highly visual venturi meter module for active learning. With this module, students can conduct fluid flow experiments in their classroom or lab setting to learn the fundamental principles behind the venturi meter. Quantitative measurements of flow rates and associated parameters with the module reveal its usefulness for demonstrating fluid flow physics, while worksheet-guided studies promote student engagement and conceptual understanding. Results of pretest, posttest, and motivational survey assessments show that the module and associated activities improve conceptual understanding, result in a surge in confidence, and reinforce the desire to participate. Therefore, based on the findings, the modules developed can be used to enhance student understanding in fluid mechanics courses. 
                        more » 
                        « less   
                    
                            
                            Using Histologic Image Analysis to Understand Biophysical Regulations of Epithelial Cell Morphology
                        
                    
    
            Epithelial mechanics and mechanobiology have become 2 important research fields in life sciences and bioengineering. These fields investigate how physical factors induced by cell adhesion and collective behaviors can directly regulate biologic processes, such as organ development and disease progression. Cell mechanics and mechanobiology thus make exciting biophysics education topics to illustrate how fundamental physics principles play a role in regulating cell biology. However, the field currently lacks hands-on activities that engage students in learning science and outreach programs in these topics. One such area is the development of robust hands-on modules that allow students to observe features of cell shape and mechanics and connect them to fundamental physics principles. Here, we demonstrate a workflow that engages students in studying epithelial cell mechanics by using commercial histology slides of frog skin. We show that by using recently developed artificial intelligence–based image-segmentation tools, students can easily quantify different cell morphologic features in a high-throughput manner. Using our workflow, students can reproduce 2 essential findings in cell mechanics: the common gamma distribution of normalized cell aspect ratio in jammed epithelia and the constant ratio between the nuclear and cellular area. Importantly, because the only required instrument for this active learning module is a readily available light microscope and a computer, our module is relatively low cost, as well as portable. These features make the module scalable for students at various education levels and outreach programs. This highly accessible education module provides a fun and engaging way to introduce students to the world of epithelial tissue mechanics. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10503169
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- The Biophysicist
- ISSN:
- 2578-6970
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Classical mechanics courses are taught to most engineering disciplinary undergraduate students. Due to the recent advancements of multiscale analysis and practice, necessary reforms need to be investigated and explored for classical mechanics courses to address the materials’ mechanics behaviors across multiple length scales. This enhanced understanding is needed for engineering students to consider materials more broadly. This paper presents a recent effort for the development of a multiscale materials and mechanics experimentation (M3E) module that can be potentially implemented in undergraduate mechanics courses, including Statics, Dynamics, Strength of Materials, and Design of Mechanical (Machine) Components. The developed education module introduces the concepts of multiscale materials behavior and microstructures in the form of micro and macro-scales. At the micro-scale, both 3D printed aluminum and cold-rolled aluminum samples were characterized using scanning electron microscope. Microstructures, including grains, grain boundaries, dislocation, precipitates, and micro-voids, were demonstrated to students. At the macro-scale, experiments following ASTM standards were conducted and full strain fields carried by all the samples were analyzed using digital image correlation method. The experimental data were organized and presented to the students in the developed M3E module. The implementation of the developed module in undergraduate mechanics classes allows students to not only visualize materials behavior under various load conditions, but also understand the reasons behind classical mechanics properties. To assess the effectiveness of the developed M3E education module, an evaluation question was developed. Students are required to classify key mechanics, materials, and processing concepts at both micro and macroscales. More than 40 fundamental concepts and keywords are included in the tests. The study outcomes and effectiveness of the M3E education module will be reported in this paper.more » « less
- 
            The rapid advancements in Artificial Intelligence (AI) hold the promise of transformative benefits across industries, including construction. To navigate this changing landscape, construction students must not only harness AI's potential but also grasp its ethical considerations and potential challenges. As such, there is a growing imperative within construction education to foster AI literacy among prospective professionals. This study developed and integrated an AI in Construction course module into an undergraduate construction management course. The primary goal is to equip students with AI literacy, achieved through a comprehensive approach that encompasses both theoretical knowledge, covering essential AI concepts and their applications in construction, and practical hands-on experiences, exemplified by a project focused on computer vision for personal protective equipment (PPE) inspection. Results from the course module implementation show that students gained a basic understanding of AI fundamentals after the module, such as dataset annotation, model development, deployment, and evaluation. Qualitative feedback indicates students were motivated to explore further AI-related topics in construction, and several topics that are of their interest were identified. These findings affirm the effectiveness of the proposed module and offer valuable insights for further development and enhancement of AI-related modules in construction education.more » « less
- 
            Bennett, M; Wolf, S.; Frank, B. W. (Ed.)Computer simulations for physics labs may be combined with hands-on lab equipment to boost student understanding and make labs more accessible. Hybrid labs of HTML5-based computer simulations and hands-on lab equipment for topics in mechanics were investigated in a large, algebra-based, studio physics course for life science students at a private, research-intensive institution. Computer simulations were combined with hands-on equipment and compared to traditional hands-on labs using an A/B testing protocol. Learning outcomes were measured for the specific topic of momentum conservation by comparing student scores on post-lab exercises, related quiz and exam questions, and a subset of questions on the Energy and Momentum Conceptual Survey (EMCS) administered before and after instruction for both groups. We find that students who completed a hands-on lab vs. a hybrid lab showed no difference in performance on momentum assessments.more » « less
- 
            Abstract Access to high‐quality outreach programs is crucial for preparing students for STEM careers, yet traditional classrooms often lack diverse, hands‐on learning opportunities, particularly in anatomy and evolutionary biology. We present Are You Stronger Than a Lemur?—an interactive STEM activity that introduces K‐12 students to fundamental concepts in anatomy, evolution, physics, and data analysis through real‐world applications. Participants formulate hypotheses, collect and analyze data, and engage with age‐tailored educational materials that support differentiated learning. We assessed the program's effectiveness through pre‐ and post‐program knowledge assessments across 1670 participants (1045 eligible responses) from the United States and Mongolia. Results showed a significant increase in knowledge acquisition in anatomy, evolution, physics, statistics, and zoology. After controlling for confounding variables, we also observed a significant increase in interest in STEM careers. Are You Stronger Than a Lemur? bridges gaps in STEM education, particularly in underrepresented fields like anatomy and evolutionary biology, by providing an adaptable program suited to different age groups, genders, and countries. Its success lies in connecting theoretical concepts to tangible data, fostering critical thinking, problem‐solving, and data interpretation skills. The program not only reinforces core STEM concepts but also offers students a unique, engaging experience that deepens their understanding and enhances their potential for future STEM careers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    