Abstract Extracellular matrix (ECM) in the human tissue contains vesicles, which are defined as matrix‐bound nanovesicles (MBVs). MBVs serve as one of the functional components in ECM, recapitulating part of the regulatory roles and in vivo microenvironment. In this study, extracellular vesicles from culture supernatants (SuEVs) and MBVs are isolated from the conditioned medium or ECM, respectively, of 3D human mesenchymal stem cells. Nanoparticle tracking analysis shows that MBVs are smaller than SuEVs (100–150 nm). Transmission electron microscopy captures the typical cup shape morphology for both SuEVs and MBVs. Western blot reveals that MBVs have low detection of some SuEV markers such as syntenin‐1. miRNA analysis of MBVs shows that 3D microenvironment enhances the expression of miRNAs such as miR‐19a and miR‐21. In vitro functional analysis shows that MBVs can facilitate human pluripotent stem cell‐derived forebrain organoid recovery after starvation and promote high passage fibroblast proliferation. In macrophage polarization, 2D MBVs tend to suppress the pro‐inflammatory cytokine IL‐12 β , while 3D MBVs tend to enhance the anti‐inflammatory cytokine IL‐10. This study has the significance in advancing the understanding of the bio‐interface of nanovesicles with human tissue and the design of cell‐free therapy for treating neurological disorders such as ischemic stroke.
more »
« less
Live Mapping of the Brain Extracellular Matrix and Remodeling in Neurological Disorders
Abstract Live imaging of the brain extracellular matrix (ECM) provides vital insights into changes that occur in neurological disorders. Current techniques such as second or third‐harmonic generation offer limited contrast for live imaging of the brain ECM. Here, a new method, pan‐ECM via chemical labeling of extracellular proteins, is introduced for live brain ECM imaging. pan‐ECM labels all major ECM components in live tissue including the interstitial matrix, basement membrane, and perineuronal nets. pan‐ECM enables in vivo observation of the ECM heterogeneity between the glioma core and margin, as well as the assessment of ECM deterioration under stroke condition, without ECM shrinkage from tissue fixation. These findings indicate that the pan‐ECM approach is a novel way to image the entire brain ECM in live brain tissue with optical resolution. pan‐ECM has the potential to advance the understanding of ECM in brain function and neurological diseases.
more »
« less
- Award ID(s):
- 2123971
- PAR ID:
- 10472593
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small Methods
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2366-9608
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Impaired wound healing is a significant financial and medical burden. The synthesis and deposition of extracellular matrix (ECM) in a new wound is a dynamic process that is constantly changing and adapting to the biochemical and biomechanical signaling from the extracellular microenvironments of the wound. This drives either a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM deposition, structure, and composition lead to impaired healing in diseased states, such as in diabetes. Valid measures of the principal determinants of successful ECM deposition and wound healing include lack of bacterial contamination, good tissue perfusion, and reduced mechanical injury and strain. These measures are used by wound-care providers to intervene upon the healing wound to steer healing toward a more functional phenotype with improved structural integrity and healing outcomes and to prevent adverse wound developments. In this review, we discuss bioengineering advances in 1) non-invasive detection of biologic and physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and 3) computational tools that efficiently evaluate the complex data acquired from the wounds based on basic science, preclinical, translational and clinical studies, that would allow us to prognosticate healing outcomes and intervene effectively. We focus on bioelectronics and biologic interfaces of the sensors and actuators for real time biosensing and actuation of the tissues. We also discuss high-resolution, advanced imaging techniques, which go beyond traditional confocal and fluorescence microscopy to visualize microscopic details of the composition of the wound matrix, linearity of collagen, and live tracking of components within the wound microenvironment. Computational modeling of the wound matrix, including partial differential equation datasets as well as machine learning models that can serve as powerful tools for physicians to guide their decision-making process are discussed.more » « less
-
Abstract The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, they established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM‐mimetic synthetic, fiber matrices, and induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs), enabling real‐time contractility readouts, in‐depth structural assessment, and tissue‐specific computational modeling. They found that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC‐CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell‐ECM interactions in myofibril assembly, myofibril maturation, and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC‐CM tissue models with controllable architecture and mechanics can elucidate mechanisms of tissue maturation and disease.more » « less
-
Abstract The viscoelastic properties of tissues influence their morphology and cellular behavior, yet little is known about changes in these properties during brain malformations. Lissencephaly, a severe cortical malformation caused byLIS1mutations, results in a smooth cortex. Here, we show that human-derived brain organoids withLIS1mutation exhibit increased stiffness compared to controls at multiple developmental stages. This stiffening correlates with abnormal extracellular matrix (ECM) expression and organization, as well as elevated water content, measured by diffusion-weighted MRI. Short-term MMP9 treatment reduces both stiffness and water diffusion levels to control values. Additionally, a computational microstructure mechanical model predicts mechanical changes based on ECM organization. These findings suggest thatLIS1plays a critical role in ECM regulation during brain development and that its mutation leads to significant viscoelastic alterations.more » « less
-
Significance Tumor progression to enable metastasis includes remodeling the wavy bundles of collagen making up the tissue stromal extracellular matrix (ECM) into straight bundles within the tumor microenvironment. While wavy collagen bundles are thought to be inhibitory to cell polarization and migration in tissue, straight ECM fibers are thought to be conducive, thereby mediating metastasis. We used nanofabricated cell culture substrates that mimic the ECM fiber waveforms seen in both benign- and metastases-promoting tumor ECMs. Large amplitude ECM waves depolarized tumor cells and decreased directional migration via cell contractility-mediated organization of the cytoskeleton and adhesions. Thus, ECM architecture of normal tissue and benign tumors may generally inhibit tumor cell exit, but this may be overcome by increasing tumor cell contractility.more » « less
An official website of the United States government
