The trapped residual magnetic flux during the cool-down due to the incomplete Meissner state is a significant source of radio frequency losses in superconducting radio frequency cavities. Here, we clearly correlate the niobium microstructure in elliptical cavity geometry and flux expulsion behavior. In particular, a traditionally fabricated Nb cavity half-cell from an annealed poly-crystalline Nb sheet after an 800 C heat treatment leads to a bi-modal microstructure that ties in with flux trapping and inefficient flux expulsion. This non-uniform microstructure is related to varying strain profiles along the cavity shape. A novel approach to prevent this non-uniform microstructure is presented by fabricating a 1.3 GHz single cell Nb cavity with a cold-worked sheet and subsequent heat treatment leading to better flux expulsion after 800 ∘C/3 h. Microstructural evolution by electron backscattered diffraction-orientation imaging microscopy on cavity cutouts, and flux pinning behavior by dc-magnetization on coupon samples confirms a reduction in flux pinning centers with increased heat treatment temperature. The heat treatment temperature-dependent mechanical properties and thermal conductivity are reported. The significant impact of cold work in this study demonstrates clear evidence for the importance of the microstructure required for high-performance superconducting cavities with reduced losses caused by magnetic flux trapping.
more »
« less
Characterization of dissipative regions of a N-doped superconducting radio-frequency cavity
We report radio-frequency measurements of quality factors and temperature mapping of a nitrogen doped Nb superconducting RF cavity. Cavity cutouts of hot and cold spots were studied with low temperature scanning tunneling microscopy and spectroscopy, X-ray photoelectron spectroscopy and secondary electron microscopy. Temperature mapping revealed a substantial reduction of the residual resistance upon cooling the cavity with a greater temperature gradient and hysteretic losses at the quench location, pointing to trapped vortices as the dominant source of residual surface resistance. Analysis of the tunneling spectra in the framework of a proximity effect theory shows that hot spots have a reduced pair potential and a wider distribution of the contact resistance between the Nb and the top Nb oxide. Alone, these degraded superconducting properties account for a much weaker excess dissipation as compared with the vortex contribution. Based on the correlation between the quasiparticle density of states and temperature mapping, we suggest that degraded superconducting properties may facilitate vortex nucleation or settling of trapped flux during cooling the cavity through the critical temperature.
more »
« less
- Award ID(s):
- 1734075
- PAR ID:
- 10472676
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Electronic Materials
- Volume:
- 3
- ISSN:
- 2673-9895
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For next-generation superconducting radiofrequency (SRF) cavities, the interior walls of existing Nb SRF cavities are coated with a thin Nb3Sn film to improve the superconducting properties for more efficient, powerful accelerators. The superconducting properties of these Nb3Sn coatings are limited due to inhomogeneous growth resulting from poor nucleation during the Sn vapor diffusion procedure. To develop a predictive growth model for Nb3Sn grown via Sn vapor diffusion, we aim to understand the interplay between the underlying Nb oxide morphology, Sn coverage, and Nb substrate heating conditions on Sn wettability, intermediate surface phases, and eventual Nb3Sn nucleation. In this work, Nb-Sn intermetallic species are grown on a single crystal Nb(100) in an ultrahigh vacuum chamber equipped with in situ surface characterization techniques including scanning tunneling microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. Sn adsorbate behavior on oxidized Nb was examined by depositing Sn with submonolayer precision on a Nb substrate held at varying deposition temperatures (Tdep). Experimental data of annealed intermetallic adlayers provide evidence of how Nb substrate oxidization and Tdep impact Nb-Sn intermetallic coordination. The presented experimental data contextualize how vapor and substrate conditions, such as the Sn flux and Nb surface oxidation, drive homogeneous Nb3Sn film growth during the Sn vapor diffusion procedure on Nb SRF cavity surfaces. This work, as well as concurrent growth studies of Nb3Sn formation that focus on the initial Sn nucleation events on Nb surfaces, will contribute to the future experimental realization of optimal, homogeneous Nb3Sn SRF films.more » « less
-
Superconducting radio-frequency (SRF) cavities are one of the fundamental building blocks of modern particle accelerators. To achieve the highest quality factors (1010–1011), SRF cavities are operated at liquid helium temperatures. Magnetic flux trapped on the surface of SRF cavities during cool-down below the critical temperature is one of the leading sources of residual RF losses. Instruments capable of detecting the distribution of trapped flux on the cavity surface are in high demand in order to better understand its relation to the cavity material, surface treatments and environmental conditions. We have designed, developed, and commissioned two high-resolution diagnostic tools to measure the distribution of trapped flux at the surface of SRF cavities. One is a magnetic field scanning system, which uses cryogenic Hall probes and anisotropic magnetoresistance sensors that fit the contour of a 1.3 GHz cavity. This setup has a spatial resolution of ∼13μm in the azimuthal direction and ∼1 cm along the cavity contour. The second setup is a stationary, combined magnetic and temperature mapping system, which uses anisotropic magnetoresistance sensors and carbon resistor temperature sensors, covering the surface of a 3 GHz SRF cavity. This system has a spatial resolution of 5 mm close to the iris and 11 mm at the equator. Initial results show a non-uniform distribution of trapped flux on the cavities’ surfaces, dependent on the magnitude of the applied magnetic field during field-cooling below the critical temperature.more » « less
-
In the rapidly evolving field of quantum computing, niobium nitride (NbN) superconductors have emerged as integral components due to their unique structural properties, including a high superconducting transition temperature (Tc), exceptional electrical conductivity, and compatibility with advanced device architectures. This study investigates the impact of high-temperature annealing and high-dose gamma irradiation on the structural, electrical, and superconducting properties of NbN films grown on GaN via reactive DC magnetron sputtering. The as-deposited cubic δ-NbN (111) films exhibited a high intensity distinct x-ray diffraction (XRD) peak, a high Tc of 12.82 K, and an atomically flat surface. Annealing at 500 and 950 °C for varying durations revealed notable structural and surface changes. High-resolution scanning transmission electron microscopy (STEM) indicated improved local ordering, while atomic force microscopy showed reduced surface roughness after annealing. X-ray photoelectron spectroscopy revealed a gradual increase in the Nb/N ratio with higher annealing temperatures and durations. High-resolution XRD and STEM analyses showed lattice constant modifications in δ-NbN films, attributed to residual stress changes following annealing. Additionally, XRD φ-scans revealed a sixfold symmetry in the NbN films due to rotational domains relative to GaN. While Tc remained stable after annealing at 500 °C, increasing the annealing temperature to 950 °C degraded Tc to 8.7 K and reduced the residual resistivity ratio from 0.85 in the as-deposited films to 0.29 after 30 min annealing. The effects of high-dose gamma radiation [5 Mrad (Si)] were also studied, demonstrating minimal changes to crystallinity and superconducting performance, indicating excellent radiation resilience. These findings highlight the potential of NbN superconductors for integration into advanced quantum devices and its suitability for applications in radiation-intensive environments such as space, satellites, and nuclear power plants.more » « less
-
Trapped vortices can contribute significantly to a residual surface resistance of superconducting radio frequency (SRF) cavities but the nonlinear dynamics of flexible vortex lines driven by strong rf currents has not been yet investigated. Here we report extensive numerical simulations of large- amplitude oscillations of a trapped vortex line under the strong rf magnetic field. The rf power dissipated by an oscil- lating vortex segment driven by the rf Meissner currents was calculated by taking into account the nonlinear vortex line tension, vortex mass and a nonlinear Larkin-Ovchinnikov viscous drag force. We calculated the field dependence of the residual surface resistance R i and showed that at low frequencies R i (H) increases with H but as the frequency increases, R i (H) becomes a nonmonotonic function of H which decreases with H at higher fields. These results sug- gest that trapped vortices can contribute to the extended Q(H) rise observed on the SRF cavities.more » « less
An official website of the United States government

