Europium (Eu) metal has a body centered cubic crystal structure which, upon a paramagnetic-to-helical magnetic phase transition, undergoes a body centered tetragonal distortion. The magnetic helix appears below a Néel temperature (TN) of ∼90 K, and an applied magnetic field gives rise to conical magnet structure. We have prepared Eu metal thin films on Si (001) substrates using Eu metal as a target by pulsed laser deposition and studied the transport properties by a four-probe method. The resistance shows a sudden slope change at TN of 88 K. The magnetoresistance (MR) is positive at temperatures below 30 K and exhibits negative values above that. Our analyses show that the positive MR at low temperatures originates from magnetic field induced spin fluctuation, and the negative MR at higher temperature is a result of suppression of critical spin fluctuation of the Eu spins by the magnetic field. The Eu film also shows hysteretic MR behaviors in mid field range, which is a result of re-distribution of the helical antiferromagnetic domains by the magnetic fields. We have also studied the transverse magnetotransport in the Eu thin films. The observed anomalous Hall effect is believed to be associated with the magnetic moment induced by the field or due to the helical spin structure of Eu itself.
more »
« less
Magnetotransport on quantum spin Hall edge coupled to bulk midgap states
We consider magnetotransport on a helical edge of a quantum spin Hall insulator, in the presence of bulk midgap states side coupled to the edge. In the presence of a magnetic field, the midgap levels are spin split, and hybridization of these levels with the itinerant edge states leads to backscattering, and the ensuing increase in the resistance. We show that there is a singular cusplike contribution to the positive magnetoresistance stemming from resonant midgap states weakly coupled to the edge. The singular behavior persists for both coherent and incoherent edge transport regimes. We use the developed theory to fit the experimental data for the magnetoresistance for monolayer WTe2 at liquid helium temperatures. The results of the fitting suggest that the cusplike behavior of the resistance in weak magnetic fields observed in experiments on monolayer WTe2 with long edge channels might indeed be explained by hybridization of the helical edge states with spin-split bulk midgap states. In particular, the dependence of the magnetoresistance on the direction of the external magnetic field is well described by the incoherent edge transport theory, at the same time being quite distinct from the one expected for a magnetic-field-induced edge gap.
more »
« less
- PAR ID:
- 10472685
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 108
- Issue:
- 8
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the phase diagram of the Yao-Lee model with Kitaev-type spin-orbital interactions in the presence of Dzyaloshinskii-Moriya interactions and external magnetic fields. Unlike the Kitaev model, the Yao-Lee model can still be solved exactly under these perturbations due to the enlarged local Hilbert space. Through a variational analysis, we obtain a rich ground-state phase diagram that consists of a variety of vison crystals with periodic arrangements of background Z2 flux (i.e., visons). With an out-of-plane magnetic field, these phases have gapped bulk and chiral edge states, characterized by a Chern number ν and an associated chiral central charge c=ν/2 of edge states. We also find helical Majorana edge states that are protected by magnetic mirror symmetry. For the bilayer systems, we find that interlayer coupling can also stabilize new topological phases. Our results spotlight the tunability and the accompanying rich physics in exactly solvable spin-orbital generalizations of the Kitaev model.more » « less
-
The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter [1, 2]. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order [3– 10], not possible in quantum Hall and Chern insulator systems. However, the QSH insulator with quantized edge conductance remains rare, let alone that with significant correlations. In this work, we report a novel dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator that aligns with single-particle band structure calculations, manifesting enhanced nonlocal transport and quantized helical edge conductance. Interestingly, upon introducing electrons from charge neutrality, TaIrTe4 only shows metallic behavior in a small range of charge densities but quickly goes into a new insulating state, entirely unexpected based on TaIrTe4’s single-particle band structure. This insulating state could arise from a strong electronic instability near the van Hove singularities (VHS), likely leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state, marked by the revival of nonlocal transport and quantized helical edge conduction. Our observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands via CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism [3–5, 11, 12].more » « less
-
Abstract Van der Waals heterostructures offer great versatility to tailor unique interactions at the atomically flat interfaces between dissimilar layered materials and induce novel physical phenomena. By bringing monolayer 1 T’ WTe2, a two-dimensional quantum spin Hall insulator, and few-layer Cr2Ge2Te6, an insulating ferromagnet, into close proximity in an heterostructure, we introduce a ferromagnetic order in the former via the interfacial exchange interaction. The ferromagnetism in WTe2manifests in the anomalous Nernst effect, anomalous Hall effect as well as anisotropic magnetoresistance effect. Using local electrodes, we identify separate transport contributions from the metallic edge and insulating bulk. When driven by an AC current, the second harmonic voltage responses closely resemble the anomalous Nernst responses to AC temperature gradient generated by nonlocal heater, which appear as nonreciprocal signals with respect to the induced magnetization orientation. Our results from different electrodes reveal spin-polarized edge states in the magnetized quantum spin Hall insulator.more » « less
-
Abstract We study magnetotransport in conical helimagnet crystals using the nonequilibriun Boltzmann equation approach. Spin dependent magnetoresistance exhibits dramatic properties for high and low electron concentrations at different temperatures. For spin up electrons we find negative magnetoresistance despite only considering a single carrier type. For spin down electrons we observe giant magnetoresistance due to depletion of spin down electrons with an applied magnetic field. For spin up carriers, the magnetoresistance is negative, due to the increase in charge carriers with a magnetic field. In addition, we investigate the spin dependent Hall effect. If a magnetic field reaches some critical value for spin down electrons, giant Hall resistance occurs, i.e. Hall current vanishes. This effect is explained by the absence of spin down carriers. For spin up carriers, the Hall constant dramatically decreases with field, due to the increase in spin up electron density. Because of the giant spin dependent magnetoresistance and Hall resistivity, conical helimagnets could be useful in spin switching devices.more » « less
An official website of the United States government

