Abstract Qualitative differences in the reactivity of trivalent lanthanide and actinide complexes have long been attributed to differences in covalent metal‐ligand bonding, but there are few examples where thermodynamic aspects of this relationship have been quantified, especially with U3+and in the absence of competing variables. Here we report a series of dimeric phosphinodiboranate complexes with trivalentf‐metals that show how shorter‐than‐expected U−B distances indicative of increased covalency give rise to measurable differences in solution deoligomerization reactivity when compared to isostructural complexes with similarly sized lanthanides. These results, which are in excellent agreement with supporting DFT and QTAIM calculations, afford rare experimental evidence concerning the measured effect of variations in metal‐ligand covalency on the reactivity of trivalent uranium and lanthanide complexes.
more »
« less
Luminescent lanthanide probes for cations and anions: Promises, compromises, and caveats
The long luminescence lifetimes and sharp emission bands of luminescent lanthanide complexes have long been recognized as invaluable strengths for sensing and imaging in complex aqueous biological or environmental media. Herein we discuss the recent developments of these probes for sensing metal ions and, increasingly, anions. Underappreciated in the field, buffers and metal hydrolysis influence the response of many responsive lanthanide probes. The inherent complexities arising from these interactions are further discussed.
more »
« less
- Award ID(s):
- 2203624
- PAR ID:
- 10472970
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Current Opinion in Chemical Biology
- Volume:
- 76
- Issue:
- C
- ISSN:
- 1367-5931
- Page Range / eLocation ID:
- 102374
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lanthanides, which are part of the rare earth elements group have numerous applications in electronics, medicine and energy storage. However, our ability to extract them is not meeting the rapidly increasing demand. The discovery of the bacterial periplasmic lanthanide‐binding protein lanmodulin spurred significant interest in developing biotechnological routes for lanthanide detection and extraction. Here we report the construction of β‐lactamase‐lanmodulin chimeras that function as lanthanide‐controlled enzymatic switches. Optimized switches demonstrated dynamic ranges approaching 3000‐fold and could accurately quantify lanthanide ions in simple colorimetric or electrochemical assays.E.colicells expressing such chimeras grow on β‐lactam antibiotics only in the presence of lanthanide ions. The developed lanthanide‐controlled protein switches represent a novel platform for engineering metal‐binding proteins for biosensing and microbial engineering.more » « less
-
Luminescent lanthanides possess ideal properties for biological imaging, including long luminescent lifetimes and emission within the optical window. Here, we report a novel approach to responsive luminescent Tb( iii ) probes that involves direct modulation of the antenna excited triplet state energy. If the triplet energy lies too close to the 5 D 4 Tb( iii ) excited state (20 500 cm −1 ), energy transfer to 5 D 4 competes with back energy transfer processes and limits lanthanide-based emission. To validate this approach, a series of pyridyl-functionalized, macrocyclic lanthanide complexes were designed, and the corresponding lowest energy triplet states were calculated using density functional theory (DFT). Subsequently, three novel constructs L3 (nitro-pyridyl), L4 (amino-pyridyl) and L5 (fluoro-pyridyl) were synthesized. Photophysical characterization of the corresponding Gd( iii ) complexes revealed antenna triplet energies between 25 800 and 30 400 cm −1 and a 500-fold increase in quantum yield upon conversion of Tb( L3 ) to Tb( L4 ) using the biologically relevant analyte H 2 S. The corresponding turn-on reaction can be monitored using conventional, small-animal optical imaging equipment in presence of a Cherenkov radiation emitting isotope as an in situ excitation source, demonstrating that antenna triplet state energy modulation represents a viable approach to biocompatible, Tb-based optical turn-on probes.more » « less
-
Praseodymium in the +5 oxidation state is a long-sought connection between lanthanide, early-transition and actinide metal redox chemistries. Unique among the lanthanide series, evidence for molecular pentavalent praseodymium species has been observed in the gas phase and noble gas matrix isolation conditions. Here we report the low-temperature synthesis and characterization of a molecular praseodymium complex in the formal +5 oxidation state, [Pr5+(NPtBu3)4][X−] (where tBu = tert-butyl and X− = tetrakis(pentafluorophenyl)borate or hexafluorophosphate). Single-crystal X-ray diffraction, solution-state spectroscopic, solution magnetometric, density functional theory and multireference wavefunction-based methods indicate a highly multiconfigurational singlet ground state. An inverted ligand field drives this unique electronic structure, which establishes a critical link in understanding the bonding of high-valent metal complexes across the periodic table.more » « less
-
Elucidating details of biology’s selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterizeMethylobacterium(Methylorubrum)extorquensLanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, LaIII. However, the monomer prefers NdIIIand SmIII, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for PrIIIand NdIIIby 100-fold. Selective dimerization enriches high-value PrIIIand NdIIIrelative to low-value LaIIIand CeIIIin an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD’s preference for NdIIIand SmIII. Our results suggest that LanD’s unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.more » « less
An official website of the United States government

